Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) 1
2)Ta có: 2011 x 2013 + 2012 x 2014 =8100311
20122 + 20132 - 2 =8100311 .
Vậy ta đã thấy 2 số bằng nhau
Kết luận : 2011 x 2013 + 2012 x 2014 = 20122+ 20132 - 2
1, \(B=3^{24}-\left(27^4+1\right)\left(9^6-1\right)\)
\(=\left(3^{12}\right)^2-\left(3^{12}+1\right)\left(3^{13}-1\right)\)
\(=\left(3^{12}\right)^2-\left[\left(3^{12}\right)^2-1\right]\)
\(=\left(3^{12}\right)^2-\left(3^{12}\right)^2+1\)
\(=1\)
Vậy \(B=1\)
B) (2x2+x-2013)2+4(x2-5x-2012)2=4(2x2+x-2013)(x2-5x-2012)
<=> (2x2+x-2013)2+4(x2-5x-2012)2-4(2x2+x-2013)(x2-5x-2012)=0
<=>(2x2+x-2013-x2+5x+2012)2=0
<=> x2+6x-1=0
<=> x2+6x+9=10
<=>(x+3)2=10
<=>x+3=\(\sqrt{10}\)
\(\Leftrightarrow x=\sqrt{10}-3\)
hình như bạn làm sai, thầy mình nói kết quả là \(\dfrac{-2011}{11}\)
\(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\)
Đặt \(\hept{\begin{cases}2x^2+x-2013=m\\x^2-5x-2012=n\end{cases}}\)nên ta có phương trình:
\(m^2+4n^2=4nm\)
\(\Leftrightarrow m^2-2.m.2n+\left(2n\right)^2=0\)
\(\Leftrightarrow\left(m-2n\right)^2=0\)
Tự làm nốt...
Bạn học trường nào thế?
a2 + b2 + c2 = a3 + b3 + c3 =a=b=c=-1hoac1
a3 + b3 + c3 - (a2 + b2 + c2) = a2(a - 1) + b2(b - 1) + c2(c - 1) 0
a3 + b3 + c3 1 a;b;c nhận hai giá trị là 0 hoặc 1
b2012 = b2; c2013 = c2; S = a2 + b 2012 + c 2013 = 1
tích hộ mình nhé
1)
\(\dfrac{x-1}{2014}+\dfrac{x-2}{2013}+\dfrac{x-3}{2012}+...+\dfrac{x-2014}{1}=2014\)
\(\Leftrightarrow\left(\dfrac{x-1}{2014}-1\right)+\left(\dfrac{x-2}{2013}-1\right)+...+\left(\dfrac{x-2014}{1}-1\right)=0\)
\(\Leftrightarrow\dfrac{x-2015}{2014}+\dfrac{x-2015}{2013}+...+\dfrac{x-2015}{1}=0\)
\(\Leftrightarrow\left(x-2025\right)\left(\dfrac{1}{2014}+\dfrac{1}{2013}+...+\dfrac{1}{1}\right)=0\)
\(\Leftrightarrow x=2015\)
Vậy \(S=\left\{2015\right\}\)