K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2022

Cái đầu tiên là \(\sqrt[n]{\frac{a_1^n+a_2^n+a_3^n+...+a_n^n}{n}}\)nhé.

26 tháng 10 2019

1. Ta có: \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Rightarrow\left(x+y+z\right)^2=\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2\)

\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=xy+yz+zx+2y\sqrt{xz}+2z\sqrt{xy}+2x\sqrt{yz}\)

\(\Leftrightarrow x^2+y^2+z^2+xy+yz+zx-2y\sqrt{xz}-2z\sqrt{xy}-2x\sqrt{yz}=0\)

\(\Leftrightarrow\left(x-\sqrt{yz}\right)^2+\left(y-\sqrt{xz}\right)^2+\left(z-\sqrt{xy}\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{yz}\\y=\sqrt{xz}\\z=\sqrt{xy}\end{matrix}\right.\)

\(\Rightarrow x^2+y^2+z^2-xy-yz-zx=0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\Rightarrow x=y=z\)

AH
Akai Haruma
Giáo viên
26 tháng 10 2019

Bài 1:
\(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)

\(\Leftrightarrow x+y+z-\sqrt{xy}-\sqrt{yz}-\sqrt{xz}=0\)

\(\Leftrightarrow 2x+2y+2z-2\sqrt{xy}-2\sqrt{yz}-2\sqrt{xz}=0\)

\(\Leftrightarrow (x+y-2\sqrt{xy})+(y+z-2\sqrt{yz})+(z+x-2\sqrt{xz})=0\)

\(\Leftrightarrow (\sqrt{x}-\sqrt{y})^2+(\sqrt{y}-\sqrt{z})^2+(\sqrt{z}-\sqrt{x})^2=0\)

\( (\sqrt{x}-\sqrt{y})^2;(\sqrt{y}-\sqrt{z})^2;(\sqrt{z}-\sqrt{x})^2\geq 0, \forall x,y,z>0\) nên để tổng của chúng bằng $0$ thì:

\( (\sqrt{x}-\sqrt{y})^2=(\sqrt{y}-\sqrt{z})^2=(\sqrt{z}-\sqrt{x})^2=0\)

\(\Rightarrow x=y=z\) (đpcm)

7 tháng 8 2019

@Akai Haruma, @Nguyễn Việt Lâm, @Nguyễn Văn Đạt, @Lê Thanh Nhàn, @Vũ Huy Hoàng, @Trần Thanh Phương, @@Nk>↑@,@buithianhtho, @Nguyễn Thị Ngọc Thơ

7 tháng 8 2019

bach nhac lam, mình năm nay mới lên lớp 9 mới biết giải sơ sơ nên mình chịu bài này,bạn thông cảm cho mình nha bucminh

1 tháng 12 2017

Áp dụng bất đẳng thức cô si ta có 

\(1+\frac{1}{a_1}\ge\frac{2}{\sqrt{a_1}}\Rightarrow\sqrt{1+\frac{1}{a_1}}\ge\frac{\sqrt{2}}{\sqrt[4]{a_1}}\)

cứ tương tự như vậy tới a_n rồi cô si tiếp n số đó(chú ý tích của n số đó =1)