Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: m=-1
BPT sẽ là:
-2(-1-1)x-3-3>0
=>4x-6>0
=>x>6/4
=>Loại
TH2: m<>-1
Δ=(2m-2)^2-4(m+1)(3m-3)
=4m^2-8m+4-4(3m^2-3)
=4m^2-8m+4-12m^2+12
=-8m^2-8m+16
Để BPT vô nghiệm thì -8m^2-8m+16<=0 và m+1<0
=>m^2+m-2>=0 và m<-1
=>(m+2)(m-1)>=0 và m<-1
=>(m>=1 hoặc m<=-2) và m<-1
=>m<=-2
Phương trình hoành độ giao điểm:
$x^2+2mx+1-3m=-2x+4\iff x^2+2x(m+1)-3-3m=0$.
$\Delta'=(m+1)^2+3+3m=(m+1)(m+4)$
Hai đồ thì cắt nhau tại hai điểm phân biệt $A,B$ khi và chỉ khi $\Delta'>0\iff (m+1)(m+4)>0(*)$.
Giả sử: $A(a;-2a+4);B(b;-2b+4),(AB)\equiv (d): y+2x-4=0$.
Theo $Viet$, ta có: $a+b=-2m-2;ab=-3-3m$.
Theo GT: $S_{OAB}=\frac{1}{2}.d(O,AB).AB(2)$.
Mà: $d(O;AB)=\frac{|-4|}{\sqrt{2^2+1^2}}=\frac{4}{\sqrt{5}}$.
$(2)\implies AB=\frac{2S_{OAB}}{d(O;AB)}=6\sqrt{10}$.
\iff AB^2=360\iff 5(a-b)^2=360\iff (a-b)^2=72\iff (a+b)^2-4ab=72$.
$\iff 4(m+1)^2+12(m+1)-72=0\iff m+1=3(n)...v...m+1=-6(n)(\text{ do (1) })$.
Vậy: $m=2...v...m=-7$ là hai giá trị cần tìm.
\(f'\left(x\right)=m^2x^4-mx^2+20x-\left(m^2-m-20\right)\)
Để hàm số đồng biến trên \(ℝ\)thì \(f'\left(x\right)\ge0,\)với mọi \(x\inℝ\).
Mà ta thấy \(f'\left(-1\right)=m^2-m-20-\left(m^2-m-20\right)=0\)
do đó \(x=-1\)là một điểm cực trị của hàm số \(f'\left(x\right)\).
Ta có: \(f''\left(x\right)=4m^2x^3-2mx+20\)
\(f''\left(-1\right)=0\Leftrightarrow-4m^2+2m+20=0\Leftrightarrow\orbr{\begin{cases}m=\frac{5}{2}\\m=-2\end{cases}}\).
Thử lại.
Với \(m=\frac{5}{2}\): \(f''\left(x\right)=25x^3-5x+20\)
\(f''\left(x\right)=0\Leftrightarrow x=-1\)
\(f'\left(-1\right)=0\)
do đó \(f'\left(x\right)\ge0\)thỏa mãn.
Với \(m=-2\): \(f''\left(x\right)=16x^3+4x+20\)
\(f''\left(x\right)=0\Leftrightarrow x=-1\).
\(f'\left(-1\right)=0\)
do đó \(f'\left(x\right)\ge0\)thỏa mãn.
Vậy tổng các giá trị của \(m\)là: \(\frac{5}{2}+\left(-2\right)=\frac{1}{2}\).
Chọn D.
1. Xét x = - 2, thay vào pt ta dc: -1.0 = 4.0 (Hợp lí)
Vậy x = -2 là 1 nghiệm của pt
Xét x \(\ne\)- 2, ta có: x + 1 = 2 - x
<=> 2x = 1 <=> x = 1/2
Vậy S = {1/2; -2}
2. a. \(2\left(m+\frac{3}{5}\right)-\left(m+\frac{13}{5}\right)=5\)
<=> \(2m+\frac{6}{5}-m-\frac{13}{5}=5\)
<=> m = \(\frac{32}{5}\)
b. \(2\left(3m+1\right)+\frac{1}{4}-\frac{2\left(3m-1\right)}{5}+3m+\frac{1}{5}=5\)
<=> \(6m+2+\frac{1}{4}-\frac{6m-2}{5}+3m+\frac{1}{5}=5\)
<=> \(6m-\frac{6m-2}{5}+3m=5-2-\frac{1}{4}-\frac{1}{5}\)
<=> \(9m-\frac{6m-2}{5}=\frac{51}{20}\)
<=> \(\frac{45m-6m+2}{5}=\frac{51}{20}\)
<=> \(20\left(39m+2\right)=51.5\)
<=> 780m + 40 = 255
<=> 780m = 215
<=> m = \(\frac{43}{156}\)
thanks