K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

1. \(3x-15=2x\left(x-5\right)\)

\(\Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\3-2x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=\frac{3}{2}\end{cases}}\)

Vậy \(S=\left\{5;\frac{3}{2}\right\}\)

A B C H 9cm 12cm K I

a. Xét \(\Delta ABC\)và \(\Delta HAC\)có: 

Góc C: chung (gt)

Góc HAC = Góc ABC ( cùng phụ với góc ACB)

\(\Rightarrow\Delta ABC\infty\Delta HAC\)

b.Ta có:  \(\Delta ABC\infty\Delta HAC\)(cmt)

\(\Rightarrow\frac{BC}{AC}=\frac{AC}{HC}\Rightarrow AC^2=BC.HC=\left(BH+HC\right).HC=\left(9+12\right).12=252cm.\Rightarrow AC=\sqrt{252}=6\sqrt{7}\)

4 tháng 5 2015

1b) Tam giác AMN vuông tại M có góc A = 600 => góc N = 300

Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 300) nên chúng đồng dạng

=> SAMD/SNMA = (AM/MN)2 = AM2/MN2 (1)

Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 600

=> tg AMI đều => AM = AI = 1/2AN

Theo Pytago ta có AN2 = AM2 + MN2 => (2AM)2 - AM2 =MN2 => 3AM2 = MN2 => AM2/MN2 = 1/3 (2)

Từ (1) và (2) bn suy ra nhé

26 tháng 4 2019

1b) Tam giác AMN vuông tại M có góc A = 60o

Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 30o) nên chúng đồng dạng

=> SAMD/SNMA  = (AM/MN)2 = AM2 /MN2 (1)

Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 60o

=> tg AMI đều => AM = AI = 1/2AN

Từ (1) và (2) bn suy ra nhé

30 tháng 5 2016

B A C I K H

a) xét tam giác ABC và tam giác HAC ta có

góc BAC = AHC ( = 90 độ)

góc C chung 

=> tam giác ABC ~ tam giác HAC ( g-g)

b)  ta có BC = HB + HC =9+16=25 cm

theo câu a ta có tam giác ABC ~ tam giác HAC ( g-g)

=> \(\frac{AB}{HA}=\frac{BC}{AC}=\frac{AC}{HC}\)

=> AC.AC=BC.HC

= AC2 = 25 . 16 = 400 

=> AC = 20 cm

áp dụng định lí Py ta go vào tam giác ABC ta có

\(AC^2+AB^2=BC^2\)

\(=>AB^2=BC^2-AC^2\)

HAY \(AB^2=25^2-20^2=225\)

\(=>AB=15\)

c)  xét tam giác vuông ABC ta có 

góc B + góc C = 90 độ 

hay 1/2 góc B + 1/2 góc B + góc C = 90 độ 

=> 90 độ - 1/2 góc B = 1/2 góc B+ góc C

mặt khác ta có

góc IKA = 1/2 góc B + góc C ( góc ngoài tam giác BKC) (1)

góc AIK = BIH (đối đỉnh)

mà góc BIH = 90 độ - 1/2 góc B = 1/2 góc B + góc C (cmt) => góc AIK = 1/2 góc B + góc C (2)

từ (1) và (2) ta có

góc IKA = góc AIK 

=> tam giác AIK cân tại A  => AI=AK

24 tháng 4 2017

Khó king khủng em mới học lớp 4 thôi để em ăn cháo sen bát bảo minh trung làm được ngay nhưng phải làm thêm tí bò húc với lại rượu đế ! la la la la la ta là một con người

19 tháng 3 2017

trả lời giúp với ạ đang cần bài gấp 

19 tháng 3 2017

a. xét tam giác ABC và tam giác HAC có

góc ACB= góc HCA ( góc chung)

góc BAC = góc AHC (=90độ)

do đó tam giác ABC đồng dạng với tam giác HAC(g.g)

b. theo bài ra ta có góc BAC=90 độ

suy ra tam giác ABC vuôg tại A

ta lại có AB=6cm, AC=8cm

suy ra AB ^2+ AC^2= BC^2

thay vào ta có  6^2+ 8^2= BC^2

suy ra BC^2= 10^2

suy ra BC = 10 (cm)

14 tháng 4 2018

a)  Xét  \(\Delta AFH\)và    \(\Delta ADB\)có:

        \(\widehat{AFH}=\widehat{ADB}=90^0\)

       \(\widehat{BAD}\) chung

suy ra:  \(\Delta AFH~\Delta ADB\)(g.g)

b)    Xét   \(\Delta AFC\)và     \(\Delta AEB\)có:

            \(\widehat{AFC}=\widehat{AEB}=90^0\)

           \(\widehat{BAC}\)   chung

suy ra:   \(\Delta AFC~\Delta AEB\)

c)   \(\Delta AFC~\Delta AEB\)

\(\Rightarrow\)\(\frac{AF}{AE}=\frac{AC}{AB}\)

\(\Rightarrow\)\(AF.AB=AE.AC\)

d) \(\frac{AF}{AE}=\frac{AC}{AB}\)(cmt)    \(\Rightarrow\)\(\frac{AE}{AB}=\frac{AF}{AC}\)

 Xét   \(\Delta AEF\) và    \(\Delta ABC\)có:

        \(\widehat{BAC}\)  chung

      \(\frac{AE}{AB}=\frac{AF}{AC}\)  (cmt)

suy ra:    \(\Delta AEF~\Delta ABC\)

14 tháng 4 2018

Còn cau (e), (f) đâu bạn

5 tháng 5 2019

***Hình bạn tự vẽ nha***

a, Xét tam giác ABC và tam giác BHA có : 

Góc ABC chung 

Góc BAC = góc BHA ( =90°)

==> Tam giác ABC đồng dạng tam giác HBA ( g.g ) 

==> AB/HB = BC/AB ==> AB^2 = HB. BC