Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1b) Tam giác AMN vuông tại M có góc A = 600 => góc N = 300
Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 300) nên chúng đồng dạng
=> SAMD/SNMA = (AM/MN)2 = AM2/MN2 (1)
Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 600
=> tg AMI đều => AM = AI = 1/2AN
Theo Pytago ta có AN2 = AM2 + MN2 => (2AM)2 - AM2 =MN2 => 3AM2 = MN2 => AM2/MN2 = 1/3 (2)
Từ (1) và (2) bn suy ra nhé
1b) Tam giác AMN vuông tại M có góc A = 60o
Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 30o) nên chúng đồng dạng
=> SAMD/SNMA = (AM/MN)2 = AM2 /MN2 (1)
Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 60o
=> tg AMI đều => AM = AI = 1/2AN
Từ (1) và (2) bn suy ra nhé
B A C I K H
a) xét tam giác ABC và tam giác HAC ta có
góc BAC = AHC ( = 90 độ)
góc C chung
=> tam giác ABC ~ tam giác HAC ( g-g)
b) ta có BC = HB + HC =9+16=25 cm
theo câu a ta có tam giác ABC ~ tam giác HAC ( g-g)
=> \(\frac{AB}{HA}=\frac{BC}{AC}=\frac{AC}{HC}\)
=> AC.AC=BC.HC
= AC2 = 25 . 16 = 400
=> AC = 20 cm
áp dụng định lí Py ta go vào tam giác ABC ta có
\(AC^2+AB^2=BC^2\)
\(=>AB^2=BC^2-AC^2\)
HAY \(AB^2=25^2-20^2=225\)
\(=>AB=15\)
c) xét tam giác vuông ABC ta có
góc B + góc C = 90 độ
hay 1/2 góc B + 1/2 góc B + góc C = 90 độ
=> 90 độ - 1/2 góc B = 1/2 góc B+ góc C
mặt khác ta có
góc IKA = 1/2 góc B + góc C ( góc ngoài tam giác BKC) (1)
góc AIK = BIH (đối đỉnh)
mà góc BIH = 90 độ - 1/2 góc B = 1/2 góc B + góc C (cmt) => góc AIK = 1/2 góc B + góc C (2)
từ (1) và (2) ta có
góc IKA = góc AIK
=> tam giác AIK cân tại A => AI=AK
Khó king khủng em mới học lớp 4 thôi để em ăn cháo sen bát bảo minh trung làm được ngay nhưng phải làm thêm tí bò húc với lại rượu đế ! la la la la la ta là một con người
a. xét tam giác ABC và tam giác HAC có
góc ACB= góc HCA ( góc chung)
góc BAC = góc AHC (=90độ)
do đó tam giác ABC đồng dạng với tam giác HAC(g.g)
b. theo bài ra ta có góc BAC=90 độ
suy ra tam giác ABC vuôg tại A
ta lại có AB=6cm, AC=8cm
suy ra AB ^2+ AC^2= BC^2
thay vào ta có 6^2+ 8^2= BC^2
suy ra BC^2= 10^2
suy ra BC = 10 (cm)
a) Xét \(\Delta AFH\)và \(\Delta ADB\)có:
\(\widehat{AFH}=\widehat{ADB}=90^0\)
\(\widehat{BAD}\) chung
suy ra: \(\Delta AFH~\Delta ADB\)(g.g)
b) Xét \(\Delta AFC\)và \(\Delta AEB\)có:
\(\widehat{AFC}=\widehat{AEB}=90^0\)
\(\widehat{BAC}\) chung
suy ra: \(\Delta AFC~\Delta AEB\)
c) \(\Delta AFC~\Delta AEB\)
\(\Rightarrow\)\(\frac{AF}{AE}=\frac{AC}{AB}\)
\(\Rightarrow\)\(AF.AB=AE.AC\)
d) \(\frac{AF}{AE}=\frac{AC}{AB}\)(cmt) \(\Rightarrow\)\(\frac{AE}{AB}=\frac{AF}{AC}\)
Xét \(\Delta AEF\) và \(\Delta ABC\)có:
\(\widehat{BAC}\) chung
\(\frac{AE}{AB}=\frac{AF}{AC}\) (cmt)
suy ra: \(\Delta AEF~\Delta ABC\)
***Hình bạn tự vẽ nha***
a, Xét tam giác ABC và tam giác BHA có :
Góc ABC chung
Góc BAC = góc BHA ( =90°)
==> Tam giác ABC đồng dạng tam giác HBA ( g.g )
==> AB/HB = BC/AB ==> AB^2 = HB. BC
1. \(3x-15=2x\left(x-5\right)\)
\(\Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\3-2x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=\frac{3}{2}\end{cases}}\)
Vậy \(S=\left\{5;\frac{3}{2}\right\}\)
A B C H 9cm 12cm K I
a. Xét \(\Delta ABC\)và \(\Delta HAC\)có:
Góc C: chung (gt)
Góc HAC = Góc ABC ( cùng phụ với góc ACB)
\(\Rightarrow\Delta ABC\infty\Delta HAC\)
b.Ta có: \(\Delta ABC\infty\Delta HAC\)(cmt)
\(\Rightarrow\frac{BC}{AC}=\frac{AC}{HC}\Rightarrow AC^2=BC.HC=\left(BH+HC\right).HC=\left(9+12\right).12=252cm.\Rightarrow AC=\sqrt{252}=6\sqrt{7}\)