Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= \(\dfrac{\sqrt{xy}-1+\sqrt{yz}-3+\sqrt{zx}-5}{3+9+6}\) = \(\dfrac{11-\left(1+3+5\right)}{18}\)=\(\dfrac{1}{9}\)
Ta có: \(a+b+c=1 \)
\(\Leftrightarrow(a+b+c)^2=1 \)
\(\Leftrightarrow ab+bc+ca=0 (1) \)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{(x+y+z)}{\left(a+b+c\right)}=x+y+z\)
\(\Leftrightarrow x=a\left(x+y+z\right)\)
\(\Leftrightarrow y=b.\left(x+y+z\right)\)
\(\Leftrightarrow z=c.\left(x+y+z\right)\)
\(\Rightarrow xy+yz+zx=ab.\left(x+y+z\right)^2+bc.\left(x+y+z\right)^2+ca.\left(x+y+z\right)^2\)
\(\Leftrightarrow xy+yz+zx=\left(ab+bc+ca\right).\left(x+y+z\right)^2\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra: \(xy+yz+zx=0\)
Bài1:
Ta có:
a)\(\sqrt{\dfrac{3^2}{5^2}}=\sqrt{\dfrac{9}{25}}=\dfrac{3}{5}\)
b)\(\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}=\dfrac{\sqrt{9}+\sqrt{1764}}{\sqrt{25}+\sqrt{4900}}=\dfrac{3+42}{5+70}=\dfrac{45}{75}=\dfrac{3}{5}\)
c)\(\dfrac{\sqrt{3^2}-\sqrt{8^2}}{\sqrt{5^2}-\sqrt{8^2}}=\dfrac{\sqrt{9}-\sqrt{64}}{\sqrt{25}-\sqrt{64}}=\dfrac{3-8}{5-8}=\dfrac{-5}{-3}=\dfrac{5}{3}\)
Từ đó, suy ra: \(\dfrac{3}{5}=\sqrt{\dfrac{3^2}{5^2}}=\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}\)
Bài 2:
Không có đề bài à bạn?
Bài 3:
a)\(\sqrt{x}-1=4\)
\(\Rightarrow\sqrt{x}=5\)
\(\Rightarrow x=\sqrt{25}\)
\(\Rightarrow x=5\)
b)Vd:\(\sqrt{x^4}=\sqrt{x.x.x.x}=x^2\Rightarrow\sqrt{x^4}=x^2\)
Từ Vd suy ra:\(\sqrt{\left(x-1\right)^4}=16\)
\(\Rightarrow\left(x-1\right)^2=16\)
\(\Rightarrow\left(x-1\right)^2=4^2\)
\(\Rightarrow x-1=4\)
\(\Rightarrow x=5\)
1) \(9^{x-1}=\dfrac{1}{9}\) (1)
\(\Leftrightarrow3^{2x-2}=3^{-2}\)
\(\Leftrightarrow2x-2=-2\)
\(\Leftrightarrow2x=0\)
\(\Leftrightarrow x=0\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{0\right\}\)
2) \(\dfrac{1}{3}:\sqrt{7-3x^2}=\dfrac{2}{15}\) (2)
\(\Leftrightarrow\dfrac{1}{3}\cdot\dfrac{1}{\sqrt{7-3x^2}}=\dfrac{2}{15}\)
\(\Leftrightarrow\dfrac{1}{3\sqrt{7-3x^2}}=\dfrac{2}{15}\)
\(\Leftrightarrow15=6\sqrt{7-3x^2}\)
\(\Leftrightarrow6\sqrt{7-3x^2}=15\)
\(\Leftrightarrow\sqrt{7-3x^2}=\dfrac{5}{2}\)
\(\Leftrightarrow7-3x^2=\dfrac{25}{4}\)
\(\Leftrightarrow-3x^2=\dfrac{25}{4}-7\)
\(\Leftrightarrow-3x^2=-\dfrac{3}{4}\)
\(\Leftrightarrow x^2=\dfrac{1}{4}\)
\(\Leftrightarrow x=\pm\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy tập nghiệm phương trình (2) là \(S=\left\{-\dfrac{1}{2};\dfrac{1}{2}\right\}\)
Làm hơi tắt , thông cảm ;))
Từ (1) \(\Rightarrow36=\left(x+y+z\right)^2\Leftrightarrow36=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
\(\Leftrightarrow36=18+2\left(xy+yz+zx\right)\Leftrightarrow xy+yz+zx=9\)(4)
Từ (3) \(\Rightarrow16=\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\Leftrightarrow16=x+y+z+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)
\(\Leftrightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=5\Leftrightarrow\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2=25\)
\(\Leftrightarrow xy+yz+zx+2\left(\sqrt{xy^2z}+\sqrt{xyz^2}+\sqrt{x^2yz}\right)=25\)
\(\Leftrightarrow\sqrt{xyz}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)=8\Leftrightarrow\sqrt{xyz}=\frac{8}{4}\Leftrightarrow xyz=4\)(5)
Vậy hệ đã cho tương đương với :
\(\hept{\begin{cases}x+y+z=6\left(1\right)\\xy+yz+zx=9\left(4\right)\\xyz=4\left(5\right)\end{cases}}\)
Từ (5) \(\Rightarrow yz=\frac{4}{x}\)(Dễ thấy \(x,y,z>0\))
(4) \(\Leftrightarrow xy+yz+zx+x^2=9+x^2\Leftrightarrow x\left(x+y+z\right)+yz=9+x^2\)
\(\Leftrightarrow x.6+\frac{4}{x}=9+x^2\Leftrightarrow x^3-6x^2+9x-4=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}.}\)
Thế vào ta suy ra hệ có các nghiệm : \(\left(x,y,z\right)=\left(1,1,4\right),\left(1,4,1\right),\left(4,1,1\right).\)
\(A=B.C\) đặt \(\left\{{}\begin{matrix}a=\sqrt{x}\\b=\sqrt{2y}\end{matrix}\right.\)
\(B=\dfrac{2a^2+b^2}{\left(a-b\right)\left(a^2+b^2+ab\right)}-\dfrac{a}{a^2+ab+b^2}\)
\(B=\dfrac{2a^2+b^2-a\left(a-b\right)}{\left(a-b\right)\left(a^2+b^2+ab\right)}=\dfrac{a^2+b^2+ab}{\left(a-b\right)\left(a^2+b^2+ab\right)}\)
\(B=\dfrac{1}{a-b}\)
\(C=\dfrac{a^3+b^3}{b^2+ab}-a=\dfrac{\left(a+b\right)\left(a^2+b^2-ab\right)}{b\left(a+b\right)}-a=\dfrac{a^2+b^2-ab-ab}{b}\)
\(C=\dfrac{\left(a-b\right)^2}{b}\)
\(A=\dfrac{1}{a-b}.\dfrac{\left(a-b\right)^2}{b}=\dfrac{a-b}{b}=\dfrac{a}{b}-1\)
\(A=\sqrt{\dfrac{x}{2y}}-1\)
Bài 1:
a: \(\Leftrightarrow2-3\sqrt{x}+5\sqrt{x}=8\)
=>2 căn x=6
=>căn x=3
=>x=9
b: \(\Leftrightarrow\dfrac{1}{\sqrt{x}}\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{6}\right)=\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{x}}=\dfrac{2}{3}:\dfrac{2}{3}=1\)
=>x=1
Câu 1/
\(\left\{{}\begin{matrix}\sqrt{\dfrac{4x}{5y}}=\sqrt{x+y}-\sqrt{x-y}\left(1\right)\\\sqrt{\dfrac{5y}{x}}=\sqrt{x+y}+\sqrt{x-y}\left(2\right)\end{matrix}\right.\)
Lấy (1).(2) vế theo vế được
\(\left(\sqrt{x+y}-\sqrt{x-y}\right)\left(\sqrt{x+y}+\sqrt{x-y}\right)=2\)
\(\Leftrightarrow x+y-\left(x-y\right)=2\)
\(\Leftrightarrow2y=2\)
\(\Leftrightarrow y=1\)
Thế vô tìm được x.
Câu 2/ Đề chưa đủ. x, y, z thuộc R luôn à. Tìm min hay max hay là tìm cả 2.