Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt cauchy-schwarz
(x2+y2)(12+12) >/ (x+y)2
=>2(x2+y2) >/ (x+y)2
=>(x+y)2 </ 2
=>max(x+y)2=2
sai sai, nhìn nhầm đề
x2 + y2 = 26
=> (x - y)2 + 2xy = 26
=> (x -y)2 + 10 = 26
=> (x - y)2 = 26
ta có:(x-y)^2= x^2-2xy+y^2
=(x^2+y^2)-2xy (1)
thay x^2+y^2=26 và xy=5 vào(1) ta đc:
26-2.5=26-10=16
vậy (x-y)^2=16 tại x^2+y^2=26, xy=5
\(xy^2+x^2y+x+y=12\)
\(xy\left(x+y\right)+\left(x+y\right)=12\)
\(\left(x+y\right)\left(xy+1\right)=12\)
\(\left(x+y\right)\left(5+1\right)=12\)
\(\Rightarrow x+y=2\)
ta có \(x^2+y^2=\left(x+y\right)^2-2xy=2^2-2.5=-6\)
Mình cũng mới hỏi câu này luôn ấy, mình có cách làm nhưng sợ không đúng thôi.
P = x4y4 + x4 + y4 + 1 + 12x2y2 – 16xy – 4
P = x4y4 + x4 + y4 + 1 + 16x2y2 – 16xy + 4 – 4x2y2 – 8
P = x4y4 + x4 + y4 + 1 + (4xy – 2)2 – 4x2y2 – 8
P = (x4 – 2x2y2 + y4) + (x4y4 – 2x2y2 + 1) – 8 + (4xy – 2)2
P = (x2 – y2)2 + (x2y2 – 1)2 – 8 + (4xy – 2)2
P = (x + y)2(x – y)2 + (xy + 1)2(xy – 1)2 + (4xy – 2)2 – 8
P = 4(x – y)2 + (xy + 1)2(xy – 1)2 + 4(2xy – 1)2 – 8
MinP = Min 4(x – y)2 + min (xy + 1)2(xy – 1)2 + min 4(2xy – 1)2 – 8
Min 4(x – y)2 = 0 => x – y = 0 => x = y = 1 => MinP = – 4
Min (xy + 1)2(xy – 1)2 = 0 =>
TH1: xy = -1 (không có x,y thỏa mãn)
TH2: xy = 1 => x = y = 1 => Min P = – 4
Min 4(2xy – 1)2 = 0 => xy = \(\frac{1}{2}\)(không có x,y thỏa mãn)
Vậy thì kết quả là -4, Violympic chưa mở nên mình chưa thử kết quả được, thân ái.
a) Theo bài ra , ta có :
x2 + y2 = 56
và xy 20 =) 2xy = 20 x 2 = 40
Lại có :
(x-y)2 = x2 - 2xy + y2 = x2 + y2 - 2xy = 56 - 40 = 16
b) Theo bài ra ta có :
x2 - y2 = 60 =) (x-y)(x+y) = 60
mà x+y = 4
=) x-y = 60:(x+y)
=) x-y = 60 : 4
=) x-y = 15
Chúc bạn học tốt =))