K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2019

Ta có:\(n^2+\left(n+1\right)^2=n^2+n^2+2n+1=2n^2+2n+1>2n^2+2n=2n\left(n+1\right)\)

\(\Rightarrow\frac{1}{n^2+\left(n+1\right)^2}< \frac{1}{2n\left(n+1\right)}\)

Áp dụng vào bài toán,ta có:

\(\frac{1}{1^2+2^2}+\frac{1}{2^2+3^2}+\frac{1}{3^2+4^2}+......+\frac{1}{n^2+\left(n+1\right)^2}\)

\(< \frac{1}{2\cdot1\cdot2}+\frac{1}{2\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+.....+\frac{1}{2\cdot n\cdot\left(n+1\right)}\)

\(=\frac{1}{2}\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{n\left(n+1\right)}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{n}-\frac{1}{n+1}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{n+1}\right)\)

\(=\frac{1}{2}-\frac{1}{2\left(n+1\right)}\)

\(< \frac{1}{2}\)

8 tháng 2 2019

\(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}.\frac{\left(n+2\right)-n}{n\left(n+1\right)\left(n+2\right)}\)

                                      \(=\frac{1}{2}\left[\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}\right]\)

                                      \(=\frac{1}{2}\left[\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]\)

27 tháng 4 2019

\(1\frac{13}{15}.0,75-\left(\frac{8}{15}+25\%\right).\frac{24}{47}-3\frac{12}{13}:3\)

\(=\frac{28}{15}.\frac{3}{4}-\left(\frac{8}{15}+\frac{1}{4}\right).\frac{24}{47}-\frac{51}{13}:3\)

\(=\frac{7}{5}-\frac{47}{60}.\frac{24}{47}-\frac{17}{13}\)

\(=\frac{7}{5}-\frac{2}{5}-\frac{17}{13}\)

\(=\frac{-4}{13}\)

27 tháng 4 2019

\(4\frac{1}{3}.\left(\frac{1}{6}-\frac{1}{2}\right)\le x\le\frac{2}{3}.\left(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\right)\)

\(\Leftrightarrow\frac{13}{3}.\frac{-1}{3}\le x\le\frac{2}{3}.\frac{-11}{12}\)

\(\Leftrightarrow\frac{-13}{9}\le x\le\frac{-11}{18}\)

\(\Leftrightarrow x=-1\)

18 tháng 7 2018

\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{100}\)

\(\Rightarrow2B=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{101}\)

\(\Rightarrow2B-B=\left[1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{101}\right]-\left[\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{100}\right]\)

\(\Rightarrow B=1-\left(\frac{1}{2}\right)^{100}\)

\(\Rightarrow B=1-\frac{1}{2^{100}}\)

\(\Rightarrow B< 1\)(đpcm)

_Chúc bạn học tốt_

27 tháng 4 2019

câu 1 : là -4

câu 2 : là -1

nếu đúng hãy cho mình 1 k đúng nhé

27 tháng 4 2019

GIẢI HẲN RA HỘ MK VỚI !!

11 tháng 4 2018

- Nhầm wall rồi bạn ey :vv

12 tháng 7 2017

A=19,39033602

23 tháng 3 2020

làm lần lượt các số hạng rồi sẽ ra

25 tháng 5 2020

a) \(1.2+2.3+...+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)(@@)

+) Với n = 1 ta có: \(1.2=\frac{1.\left(1+1\right)\left(1+2\right)}{3}\) đúng

=> (@@) đúng với n = 1 

+) G/s (@@) đúng cho đến n 

+) Ta chứng minh (@@ ) đúng với n + 1 

Ta có: \(1.2+2.3+...+n\left(n+1\right)+\left(n+1\right)\left(n+2\right)\)

\(=\frac{n\left(n+1\right)\left(n+2\right)}{3}+\left(n+1\right)\left(n+2\right)\)

\(=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right)}{3}\)

=>  (@@) đúng với n + 1

Vậy (@@ ) đúng với mọi số tự nhiên n khác 0

26 tháng 5 2020

b) \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^n}=\frac{2^n-1}{2^n}\) (@)

Ta chứng minh (@) đúng  với n là số tự nhiên khác 0 quy nạp theo n 

+) Với n = 1 ta có: \(\frac{1}{2}=\frac{2^1-1}{2^1}\) đúng 

=> (@) đúng với n = 1 

+) G/s (@) đúng cho đến n 

+) Ta cần chứng minh (@) đúng với n + 1 

Ta có: \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^n}+\frac{1}{2^{n+1}}=\frac{2^n-1}{2^n}+\frac{1}{2^{n+1}}=\frac{2^{n+1}-2+1}{2^{n+1}}=\frac{2^{n+1}-1}{2^{n+1}}\)

=> (@) đúng với n + 1 

Vậy (@) đúng với mọi số tự nhiên n khác 0.