Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dựa vào bài tớ nêu, ta đã biết bạn Nguyễn Tuấn Minh sai ở chỗ nào.
Chính ở chỗ này:
3 ( 40 + n ) = 120 + n
Sai ở chỗ: Còn thừa số 3 nên bạn phải nhân n với 3 nhưng bạn quên nhân nên chỉ ghi luôn là n mà không ghi 3n.
Sửa lại cho đúng: 3 ( 40 + n ) = 120 + 3n
Rất mong bạn và các bạn khác không mắc thêm các lỗi sai như thế. Hãy tham khảo bài tớ nhé!
Bài 2:
Gọi số cần tìm là A
*2,3,4,5,6 có BCNN là 60
(A - 1) chia hết cho 2,3,4,5,6 nên A = 60a (a là số tự nhiên khác 0)
=> A = 60a + 1
*A chia hết cho 7 nên: A = 60a+1 = 7b
=> 7b = 56a + 4a + 1 = 7.8a + 4a + 1
=> b = 8a + (4a+1)/7
Vì b nguyên dương nên (4a+1) chia hết cho 7
A nhỏ nhất khi a nhỏ nhất thỏa (4a+1) chia hết cho 7
=> a = 5
=> A = 301
**Dạng chung:
Từ trên ta có 4a+1 = 7c = 8c - c
=> a = 2c - (c+1)/4
=> c+1 chia hết cho 4
=> c+1 = 4k
=> c = 4k-1
Thay trở lại ta có:
a = 2c - (c+1)/4 = 8k-2 - (4k-1+1)/4 = 8k-2 -k = 7k-2
A = 60a + 1 = 60(7k-2) + 1 = 420k - 119
Công thức chung là A = 420k - 119 với k nguyên dương
Rõ ràng k nhỏ nhất là 1 nên ứng với A = 301
bài 1:x.y=-15 => x=3;y=-5
x=-3;y=5
x=5;y=-3
x=-5;y=3
x=-1;y=15
x=1;y=-15
Bài 1 đơn giản rồi nha, chỉ cần liệt kê các gặp số ra là xong
BÀi 2:
ta có:
\(\frac{n-3}{n-1}=\frac{n-1-2}{n-1}=1-\frac{2}{n-1}\)
Để n-3 chia hết cho n-1 <=> \(\frac{2}{n-1}\inℤ\Rightarrow2⋮n-1\)
\(\Rightarrow n-1\inƯ\left(2\right)\)
\(\Rightarrow n-1\in\left\{\pm1;\pm2\right\}\)
ta có bảng sau:
n-1 | -2 | -1 | 1 | 2 |
n | -1 | 0 | 2 | 3 |
\(n\in\left\{-1;0;2;3\right\}\)
Câu 1: (n+3) (n+6) (1)
Ta xét 2 trường hợp:
+Nếu n là lẻ thì n+3 là chẵn, n+6 là lẻ. Tích giữa 1 số chẵn và 1 số lẻ là số chẵn => (n+3) (n+6) chia hết cho 2.
+Nếu n là chẵn thì n+3 là lẻ, n+6 là chẵn. Tích giữa 1 số lẻ và 1 số chẵn là số chẵn => (n+3) (n+6) chia hết cho 2.
Vậy với mọi số tự nhiên n thì tích (n+3) (n+6) chia hết cho 2.
Ta có :
(3x-8):4=7
3x-8 =7*4
3x-8 =28
3x-8 =28+8
3x =36
x =6 (TMĐK)
Vậy x = 6