Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(0< a< 1\Rightarrow a^2< a\)
Tương tự: \(b^2< b;c^2< c\)
=> a^2+b^2+c^2<a+b+c=2
Ta có: \(0< a< 1\)
\(\Rightarrow a-1< 0\)
\(\Rightarrow a^2-a< 0\left(1\right)\)
Tương tự ta có: \(0< b< 1\Rightarrow b^2-b=a\left(2\right)\)
Và: \(0< c< 1\Rightarrow c^2-c< 0\left(3\right)\)
Cộng: \(\left(1\right)\left(2\right)\left(3\right)\) vế theo vế ta được:
\(a^2+b^2+c^2-a-b-c< 0\)
\(\Leftrightarrow a^2+b^2+c^2< a+b+c\)
\(\Leftrightarrow a^2+b^2+c^2< 2\left(a+b+c=2\right)\)
\(a)\) Ta có :
\(A=a^2+b^2=\left(a+b\right)^2-2ab=7^2-2.10=49-20=29\)
Vậy \(A=29\)
\(B=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=7\left(29-10\right)=7.19=133\)
Vậy \(B=133\)
\(b)\) Đặt \(A=-x^2+x-1\) ta có :
\(-A=x^2-x+1\)
\(-A=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)
\(-A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
\(A=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le\frac{3}{4}< 0\)
Vậy \(A< 0\) với mọi số thực x
Chúc bạn học tốt ~
Bài 2:
a) Áp dụng BĐT AM - GM ta có:
\(\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\dfrac{1}{4a}+\dfrac{1}{4b}\) \(\ge2\sqrt{\dfrac{1}{4^2ab}}=\dfrac{2}{4\sqrt{ab}}=\dfrac{1}{2\sqrt{ab}}\)
\(\ge\dfrac{1}{a+b}\) (Đpcm)
b) Trừ 1 vào từng vế của BĐT ta được BĐT tương đương:
\(\left(\frac{x}{2x+y+z}-1\right)+\left(\frac{y}{x+2y+z}-1\right)+\left(\frac{z}{x+y+2z}-1\right)\le\frac{-9}{4}\)
\(\Leftrightarrow-\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\le-\frac{9}{4}\)
\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)
Áp dụng BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\) ta có:
\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)
\(\ge\dfrac{9}{2x+y+z+x+2y+z+x+y+2z}=\dfrac{9}{4\left(x+y+z\right)}\)
\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)
\(\Leftrightarrow\dfrac{x}{2x+y+z}+\dfrac{y}{x+2y+z}+\dfrac{z}{x+y+2z}\le\dfrac{3}{4}\) (Đpcm)
Bài 1:
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT\ge\dfrac{\left(a+b\right)^2}{a-1+b-1}=\dfrac{\left(a+b\right)^2}{a+b-2}\)
Nên cần chứng minh \(\dfrac{\left(a+b\right)^2}{a+b-2}\ge8\)
\(\Leftrightarrow\left(a+b\right)^2\ge8\left(a+b-2\right)\)
\(\Leftrightarrow a^2+2ab+b^2\ge8a+8b-16\)
\(\Leftrightarrow\left(a+b-4\right)^2\ge0\) luôn đúng
1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)
2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)
3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0
4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)
5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)
1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)
=> Đpcm
2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)
Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)
=> Đpcm
3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)
\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)
\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)
=> Đpcm
4,5 làm tương tự
Ta có: 0 < a < 1 ; 0 < b < 1 ; 0 < c < 1
\(\Rightarrow\hept{\begin{cases}a\left(a+1\right)< 0\\b\left(b+1\right)< 0\\c\left(c+1\right)< 0\end{cases}}\)
Cộng vế với vế. Ta được:
\(a\left(a+1\right)+b\left(b+1\right)+c\left(c+1\right)< 0\)
\(a^2+a+b^2+b+c^2+c< 0\)
\(a^2+b^2+c^2< a+b+c\)
Mà a + b + c = 2
\(\Rightarrow a^2+b^2+c^2< 2\left(đpcm\right)\)
P/s: Không chắc đâu nhé :D
a)\(x^2+2xy+1+y^2=\left(x+y\right)^2+1\)
Vì \(\left(x+y\right)^2\ge0\)với mọi \(x,y\in\)
nên \(\left(x+y\right)^2+1>0\)với mọi \(x,y\in R\)
Vậy biểu thức \(x^2+2xy+y^2+1>0\left(x;y\in R\right)\)
b) \(-x^2+x-1=-\left(x^2-2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x-\frac{1}{2}\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\left(x\in R\right)\)
Vậy biểu thức \(x-x^2-1< 0\left(x\in R\right)\)
Theo t thì điều kiện thế này:\(-1< a,b,c< 1\)
Vì \(a+b+c=0;-1< a,b,c< 1\) nên trong các số a,b,c thì tồn tại 2 số có cùng dấu.Giả sử \(a>0;b>0;c< 0\)
\(a+b+c=0\Rightarrow c=-\left(a+b\right)\)
Do \(a+b+c=0;-1< a,b,c< 1\) nên:\(a^2+b^2+c^2< \left|a\right|+\left|b\right|+\left|c\right|\)
\(\Rightarrow a^2+b^2+c^2< a+b-z\)
\(\Rightarrow a^2+b^2+c^2< -2z< 2\)
\(\Rightarrowđpcm\)
a) \(A=x^2-2x+2=\left(x-1\right)^2+1>0\forall x\inℝ\)
b) \(x-x^2-3=-\left(x^2-x+3\right)\)
\(=-\left(x^2-x+\frac{1}{4}+\frac{11}{4}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)
\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{11}{4}\le\frac{-11}{4}< 0\forall x\inℝ\)
1) 2( a2 + b2 ) ≥ ( a + b)2
<=> 2a2 + 2b2 - a2 - 2ab - b2 ≥ 0
<=> a2 - 2ab + b2 ≥ 0
<=> ( a - b )2 ≥ 0 ( luôn đúng )
=> đpcm
2) Áp dụng BĐT Cô-si cho 2 số dương x , y , ta có :
a + b ≥ \(2\sqrt{ab}\)
=> \(\dfrac{1}{x}+\dfrac{1}{y}\) ≥ 2\(\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}\)
=> ( x + y)( \(\dfrac{1}{x}+\dfrac{1}{y}\) ) ≥ \(2\sqrt{xy}\)2\(\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}\)
=> ( x + y)( \(\dfrac{1}{x}+\dfrac{1}{y}\)) ≥ 4
=> \(\dfrac{1}{x}+\dfrac{1}{y}\) ≥ \(\dfrac{4}{x+y}\)