Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(-\left(x^2-6x+10\right)=-\left(x^2-6x+9+1\right)=-\left[\left(x-3\right)^2+1\right]\le-1< 0\forall x\)
BĐT đúng
b) \(x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
BĐT đúng
c)Dấu "=" ko xảy ra???
\(=\left(4x^2+2.2x.y+y^2\right)+2\left(2x+y\right)+1+2\)
\(=\left(2x+y\right)^2+2.\left(2x+y\right).1+1+1\)
\(=\left(2x+y+1\right)^2+1\ge1>0\) (đpcm)
a. −x2 + 6x - 10
= −(x2 − 6x) − 10
= −(x2 − 2.x.3 + 32 − 9) − 10
= −(x − 3)2 + 9 − 10
= −(x − 3)2 −1
Vì (x − 3)2 ≥ 0 ∀ x ⇒ −(x − 3)2 ≤ 0 ⇒ −(x − 3)2 −1 ≤ −1
Vậy −(x − 3)2 −1 < 0 ⇒ −x2 + 6x - 10 luôn âm với mọi x
a. \(x^2+3x+5\)
\(=x^2+2.x^2.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
=> đpcm
Giải:
a) \(x^2-6x+10\)
\(=x^2+6x+9+1\)
\(=\left(x+3\right)^2+1\)
Vì \(\left(x+3\right)^2\ge0\forall x\)
Nên \(\left(x+3\right)^2+1\ge1\forall x\)
Vậy \(\left(x+3\right)^2+1>0\forall x\).
b) \(4x-x^2-5\)
\(=-x^2+4x-4-1\)
\(=-\left(x^2-4x+4\right)-1\)
\(=-\left(x+2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\forall x\)
Nên \(-\left(x+2\right)^2-1\le-1\forall x\)
Vậy \(-\left(x+2\right)^2-1< 0\forall x\).
Chúc bạn học tốt!
\(\text{a) }x^2-6x+10\\ =x^2-6x+9+1\\ =\left(x^2-6x+9\right)+1\\ =\left(x^2-2\cdot x\cdot3+3^2\right)+1\\ =\left(x-3\right)^2+1\\ \text{Ta có : }\left(x-3\right)^2\ge0\forall x\\ \Rightarrow\left(x-3\right)^2+1\ge1\forall x\\ \Rightarrow\left(x-3\right)^2+1>0\forall x\left(đpcm\right)\\ \text{Vậy biểu thức luôn nhận giá trị dương }\forall x\)
\(\text{b) }4x-x^2-5\\ =-x^2+4x-4-1\\ =-\left(x^2-4x+4\right)-1\\ =-\left(x^2-2\cdot x\cdot2+2^2\right)-1\\ =-\left(x-2\right)^2-1\\ \text{Ta có : }\left(x-2\right)^2\ge0\forall x\\ \Rightarrow-\left(x-2\right)^2\le0\forall x\\ \Rightarrow-\left(x-2\right)^2-1\le-1\forall x\\ \Rightarrow-\left(x-2\right)^2-1< 0\forall x\left(đpcm\right)\\ \text{Vậy biểu thức luôn nhận giá trị âm }\forall x\)
a) \(x^2\) − 6x + 10
= ( \(x^2\) − 6x + 9) + 1
= \(\left(x-3\right)^2\) + 1
Ta thấy : \(\left(x-3\right)^2\) \(\ge\) 0
\(\left(x-3\right)^2\) + 1 > 0 với mọi x
b) \(4x-x^2\) − 5
= − ( − 4 + \(x^2\)+ 5)
= − ( \(x^2\) − 4x + 5)
= − (\(x^2\) − 4x + 4 +1)
= − (x − 2) \(^2\) − 1
Ta thấy : − (x − 2)\(^2\) \(\le\) 0
− (x − 2)\(^2\) − < 0 với mọi x
\(x^2\)\(x^2\)\(x^2\)
a) \(x^2-6x+10\\ =x^2-6x+9+1\\ =\left(x-3\right)^2+1\)
Ta xét thấy: \(\left(x-3\right)^2\ge0\forall x\\ =>\left(x-3\right)^2+1>0\forall x\)
b) \(4x-x^2-5\\ =-\left(x^2-4x+5\right)\\ =-\left(x^2-4x+4+1\right)\\ =-\left(x-2\right)^2-1\)
Ta xét thấy:
\(-\left(x-2\right)^2\le0\forall x\\ =>-\left(x-2\right)^2-1< 0\forall x\)
x2-6x+10
=x2-6x+9+1
=(x-3)2+1>0 với mọi x (vì (x-3)2\(\ge\)0 với mọi x)
4x-x2-5
= -x2+4x-4-1
= -(x2-4x+4)-1
= -(x-2)2-1<0 với mọi x(vì -(x-2)2<0 với mọi x)
BÀI 1:
a) \(ĐKXĐ:\) \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)
b) \(A=\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)
\(=\left(\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{\left(x+2\right)^2}{8}\)
\(=\frac{2x+4-2x+4}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x+2\right)^2}{8}\)
\(=\frac{x+2}{x-2}\)
c) \(A=0\) \(\Rightarrow\)\(\frac{x+2}{x-2}=0\)
\(\Leftrightarrow\) \(x+2=0\)
\(\Leftrightarrow\)\(x=-2\) (loại vì ko thỏa mãn ĐKXĐ)
Vậy ko tìm đc x để A = 0
p/s: bn đăng từng bài ra đc ko, mk lm cho
Áp dụng BĐT Cauchy, ta có:
\(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2}.\frac{1}{y^2}}=\frac{2}{xy}\)
\(\Rightarrow VT\ge\frac{2}{xy}+\frac{1}{x^2+y^2}\)
\(\Leftrightarrow VT\ge\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)+\frac{3}{2xy}\)
\(\Rightarrow VT\ge\frac{4}{\left(x+y\right)^2}+\frac{3}{\frac{\left(x+y\right)^2}{2}}\)
\(\Leftrightarrow VT\ge\frac{4}{\left(x+y\right)^2}+\frac{6}{\left(x+y\right)^2}=\frac{10}{\left(x+y\right)^2}\)
Dấu = xảy ra khi \(x=y>0\)
Vậy \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{x^2+y^2}\ge\frac{10}{\left(x+y\right)^2}\) với \(\forall x;y>0\)
a) Để \(\frac{15}{4x^2-12x+19}\le\frac{3}{2}\) thì \(15\cdot2\le3\cdot\left(4x^2-12x+19\right)\)
\(\Leftrightarrow30\le12x^2-36x+57\)
\(\Leftrightarrow30-12x^2+36x-57\le0\)
\(\Leftrightarrow-12x^2+36x-27\le0\)
\(\Leftrightarrow-12\left(x^2-3x+\frac{9}{4}\right)\le0\)
\(\Leftrightarrow-12\left(x-\frac{3}{2}\right)^2\le0\)(luôn đúng)
b) Để \(\frac{4x+3}{x^2+1}\le4\)
thì \(4x+3\le4\left(x^2+1\right)\)
\(\Leftrightarrow4x+3\le4x^2+4\)
\(\Leftrightarrow4x+3-4x^2-4\le0\)
\(\Leftrightarrow-4x^2+4x-1\le0\)
\(\Leftrightarrow-\left(4x^2-4x+1\right)\le0\)
\(\Leftrightarrow-\left(2x-1\right)^2\le0\)(luôn đúng)
bn giang gì đó ơi làm nè:)