Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) => 2a^2 + 2b^2 = 2ab + 2ba
=> 2a^2 + 2b^2 - 2ab - 2ba = 0
=> (a-b)^2 + (a-b)^2 = 0
=> 2(a-b)^2 = 0
=> a-b = 0
=> a = b
b) Nhân hai vế với 2 và làm tương tự câu a)
=> (a-b)^2 + (b-c)^2 + (a-c)^2 = 0
=> a = b = c
Ta có: a2 + b2 + c2 - ab - bc - ca = 0
=> aa + bb + cc - ab - bc - ca = 0
=> aa + ab - bb + bc - cc -+ca = 0
=> a - b - c = 0
=> a = b = c (đpcm)
a) Ta có: a2+b2+c2=ab+bc+ca
=>2(a2+b2+c2)=2(ab+bc+ca)
<=>2a2+2b2+2c2=2ab+2bc+2ca
<=>2a2+2b2+2c2-2ab-2bc-2ca=0
<=>a2+a2+b2+b2+c2+c2-2ab-2bc=2ca=0
<=>(aa-2ab+b2)+(b2-2bc+b2)+(a2-2ca+c2)=0
<=>(a-b)2+(b-c)2+(a-c)2=0
=>hoặc (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0<=>a-b=0 hoặc b-c=0 hoặc a-c=0<=>a=b hoặc b=c hoặc a=c
=>a=b=c
1) a) \(A=100^2-99^2+98^2-97^2+....+2^2-1^2\)
\(=\left(100-99\right)\left(100+99\right)+\left(99-98\right)\left(99+98\right)+....\left(2-1\right)\left(2+1\right)\)
\(=100+99+98+.....+2+1\)
\(=\dfrac{100.101}{2}=5050\)
2) a) \(VP=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=a^3+b^3+3a^2b+3ab^2-3a^2b+3ab^2=a^3+b^3=VT\)
b) \(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3a^2b+3ab^2+c^3-3abc\)
\(=\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=\dfrac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)\)
\(=\dfrac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)Khi \(a^3+b^3+c^3=3abc\) \(\Rightarrow\)
\(\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
i.i \(A=\dfrac{bc}{a^2}+\dfrac{ca}{b^2}+\dfrac{ab}{c^2}=abc\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=abc.\dfrac{3}{abc}=3\)iii. \(a^3+b^3+c^3=3abc\Rightarrow\)
\(\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
TH1: a=b=c
\(B=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
TH2: a+b+c=0
\(B=\left(\dfrac{a+b}{b}\right)\left(\dfrac{b+c}{c}\right)\left(\dfrac{a+c}{a}\right)=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}=-1\)
a) ta có 4p(p-a)=2(a+b+c){(a+b+c)/2}=(a+b+c)(a+b+c)=b2+2bc+c2+a2(đpcm)
a2+b2+c2=ab+ac+bc
<=>2a2+2b2+2c2=2ab+2ac+2bc
<=>a2-2ab+b2+a2-2ac+c2+b2-2bc=0
<=>(a-b)2+(a-c)2+(b-c)2=0
<=>a-b=0 và a-c=0 và b-c=0
<=>a=b=c
a: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+b^2d^2+2bacd+a^2d^2+b^2c^2-2bacd\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
b: \(\Leftrightarrow2a^2+2b^2+2c^2=2ba+2ac+2bc\)
=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
=>(a-b)^2+(b-c)^2+(a-c)^2=0
=>a=b=c
1) a) a^2+b^2=ab+ba
<=> a^2+b^2-2ab=0
<=> (a-b)^2=0
<=> a-b=0 <=> a=b (đpcm)
b) a^2+b^2+c^2=ab+bc+ca
<=> 2a^2+2b^2+2c^2=2ab+2bc+2ca
<=> (a^2-2ab+b^2)+(a^2-2ca+c^2)+(b^2-2bc+c^2)=0
<=> (a-b)^2+(a-c)^2+(b-c)^2=0
<=> a-b=0 và a-c=0 và b-c=0
<=> a=b và a=c và b=c
<=> a=b=c (đpcm)