\(⋮\) 6.

2) Chứn...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2016

1) Chứng minh rằng tích của ba số tự nhiên liên tiếp chia hết cho 6.

=> Gọi n, n+1, n+2( n \(\in\) \(N\)) là 3 số tự nhiên liên tiếp

- Trong hai số tự nhiên liên tiếp luôn có một số chẵn nên:

n.( n+1). ( n+2) \(⋮\)2.

- Trong ba số tự nhiên liên tiếp luôn có một thừa số \(⋮\) 3.

Mà 2 và 3 là hai số nguyên tố cùng nhau.

Suy ra: n.(n+1).(n+2) \(⋮\) 2 . 3 = 6(đpcm).

2) Chứng tỏ: 3n+3 + 3n+1 + 2n+3 + 2n+2 chia hêt cho 6.

=> 3n+3 + 3n+1 + 2n+3 + 2n+2

= 3n. 33 + 3n . 3 + 2n . 23 + 2n . 22

= 3n. (27+3) + 2n . ( 8+4)

= 6. ( 3n . 5 + 2n . 2)

= 6k với k = 3n . 5 + 2n+1

Mà 6k \(⋮\) 6 => ( 3n+3 + 3n+1+ 2n+3 + 2n+2) \(⋮\) 6(đpcm).

3) a) ( 6100 - 1) \(⋮\) 5

b) 2120 - 1110 chia hết cho cả 2 và 5

a) ( 6100 - 1) \(⋮\)5

=> Số 6100 có chữ số tận cùng là 6.

Nên 6100 - 1 là số có chữ số tận cùng là 5( 6-1=5)

=> ( 6100 - 1) \(⋮\)5(đpcm).

b) 2120 - 1110 chia hết cho cả 2 và 5.

=> Số 2120 có chữ số tận cùng là 1.

Số 1110 có chữ số tận cùng cũng là 1.

Nên 2120 - 1110 là số có chữ số tận cùng là 0.

=> 2120 - 1110 chia hết cho 2 và 5(đpcm).

4) Chứng minh rằng:

a) ( 450+108+180) \(⋮\)9

b) ( 1350 +735+255) \(⋮\)5

c) ( 32624+2016) \(⋮\)4

a) ( 450+108+180) \(⋮\)9

=> Vì 450 \(⋮\) 9; 108 \(⋮\) 9; 180 \(⋮\)9

Nên ( 450+108+180) \(⋮\)9.

b) ( 1350+735+255) \(⋮\)5

=> Vì 1350 \(⋮\) 5; 735 \(⋮\)5; 255 \(⋮\)5

Nên ( 1350+735+255) \(⋮\)5.

c) ( 32624 + 2016) \(⋮\) 4

=> Vì 32624 \(⋮\)4; 2016 \(⋮\)4

Nên ( 32624 + 2016) \(⋮\)4.

Đây là câu trả lời của mình, mình chúc bạn học tốt!

25 tháng 10 2016

uk

Bài 1:Cho A = 21 + 22 + 23 + ... + 220Cho B = 31 + 32 + 33 + ... + 3300a) Tìm chữ số tận cùng của A.b) Chứng minh rằng B chia hết cho 2.c) Chứng minh rằng B - A chia hết cho 5.Bài 2 : Chứng minh rằng:a) 301293 - 1 chia hết cho 9b) 2093n - 803n - 464n - 261n chia hết cho 271c) 62n + 3n+2 . 3n chia hết cho 11d) 5 2n+1 . 2 n+2 + 3n+2. 22n+1 chia hết cho 19 ( n thuộc N)Bài 3: Ngày 1 tháng 1 năm 2010 bạn Nam sẽ kỉ niệm ngày sinh...
Đọc tiếp

Bài 1:

Cho A = 21 + 22 + 23 + ... + 220

Cho B = 31 + 32 + 33 + ... + 3300

a) Tìm chữ số tận cùng của A.

b) Chứng minh rằng B chia hết cho 2.

c) Chứng minh rằng B - A chia hết cho 5.

Bài 2 : Chứng minh rằng:

a) 301293 - 1 chia hết cho 9

b) 2093n - 803n - 464- 261chia hết cho 271

c) 62n + 3n+2 . 3n chia hết cho 11

d) 5 2n+1 . 2 n+2 + 3n+2. 22n+1 chia hết cho 19 ( n thuộc N)

Bài 3: Ngày 1 tháng 1 năm 2010 bạn Nam sẽ kỉ niệm ngày sinh nhật lần thứ 15 của mình. Biết rằng ngày 1 thắng 1 năm 2008 là ngày thứ 3.

a, Hãy tính xem bạn Nam sinh vào ngày thứ mấy.

b, Bạn Nam sẽ tổ chức sinh nhật lần thứ 15 vào ngày thứ mấy?

Bài 4:

So sánh các số sau:

a) 3281 và 3190

b) 11022009 - 11022008 và 11022008 - 11022007

c) A = ( 20082007 + 20072007)2008 và B = ( 20082008 + 200720082007

Bài 5: Tính tổng sau bằng cách hợp lí.

a) A = 21 + 22 + 23 + 24 +....+ 2100

b) B = 1 + 3 + 32 + .....+ 32009

c) C = 1 + 5 + 52 + 53... + 51998

d) D = 4 + 42 + 43 + ... + 4n


Bài 6: Cho A = 1 + 2 + 22 + 23 + 24 + ... + 2200. Hãy viết A + 1 dưới dạng một lũy thừa.

Bài 7 : Cho B = 3 + 32 + 33 + ... + 32005 . Chứng minh rằng 2B + 3 là lũy thừa của 3.

Bài 8 : Chứng minh rằng

a) 55 - 54 + 53 chia hết cho 7 .

b) 7+ 75 - 74 chia hết cho 11.

c, 10+ 108 + 107 chia hết cho 222.

d, 10- 5chia hết cho 59.

e, 3n+2 . 2n+2 + 3n - 2n chia hết cho 10 ( n thuộc N*).

f, 81- 279 - 913 chia hết cho 45.

7
5 tháng 12 2019

Vừa vừa thôi man,làm hết đó không khác gì nô lệ của bạn

lm 1 ít thui =>2A=

A = 21 + 22 + 23 + ... + 220

 =>2A=22+23+24+...+221

=>A=221-21

13 tháng 12 2018

a, S=1+2^7+(2+2^2)+(2^3+2^4)+(2^5+2^6)

    S=1+128+2*3+(2^3*1+2^3*2)+(2^5*1+2^5*2)

    S=129+2*3+2^3*(1+2)+2^5*(1+2)

    S=3*43+2*3+2^3*3+2^5*3

    S=3*(43+2+2^3+2^5)chia hết cho 3 nên S chia hết cho 3

     

26 tháng 12 2018

c) S = ( -2 ) + 4+ ( -6 ) + 8 + ... + ( -2002 ) + 2004

    S = [ (-2)+4] + [ (-6) + 8 ] + ... + [ (-2002) + 2004 ]

    S = 2 + 2 + 2 + ... + 2 ( 501 số hạng 2 )

    S = 2*501

    S = 1002

19 tháng 7 2017

1)

\(A=156+273+533+y\)

\(A=962+y\)

\(962⋮13\)

Để \(A⋮13\rightarrow y⋮13\)

\(A⋮̸13\rightarrow y⋮̸13\)

2)

\(A=1+3+3^2+...+3^{11}\)

* để A chia hết cho 13:

\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)

\(A=1\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)

\(A=\left(1+3^3+...+3^9\right)\left(1+3+3^2\right)\)

\(A=13\left(1+3^3+3^9\right)⋮13\rightarrowđpcm\)

* để A chia hết cho 40:

\(A=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)

\(A=1\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^8\left(1+3+3^2+3^3\right)\)\(A=\left(1+3^4+...+3^8\right)\left(1+3+3^2+3^3\right)\)

\(A=40\left(1+3^4+...+3^8\right)⋮40\rightarrowđpcm\)

3)

\(25^{24}-25^{23}\)

\(=25^{23}.25-25^{23}.1\)

\(=25^{23}.\left(25-1\right)\)

\(=25^{23}.24\)

\(=25^{23}.4.6⋮6\rightarrowđpcm\)

4) Gọi 5 số tự nhiên liên tiếp đó là a;a+1;a+2;a+3;a+4

Tích của 5 số tự nhiên liên tiếp là :

\(a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\)

Ta có: \(a+1;a+3\) hoặc \(a+2;a+4\)là 2 số chẵn liên tiếp nên sẽ chia hết cho 8

5 số tự nhiên liên tiếp luôn có 1 số chia hết cho 5

a;a+1;a+2 luôn sẽ có 1 số chia hết cho 3

5 số tự nhiên liên tiếp đó chia hết cho 3;5;8

\(\Rightarrow⋮120\rightarrowđpcm\)

18 tháng 7 2017

khó quábucminhkhocroi

15 tháng 10 2015

b;

bạn thử từng trường hợp đầu tiên là chia hết cho 2 thì n=2k và 2k+1.

.......................................................................3......n=3k và 3k + 1 và 3k+2

c;

bạn phân tích 2 số ra rồi trừ đi thì nó sẽ chia hết cho 9

d;tương tự b

e;g;tương tự a