K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2020

1)Ta có: \(a^2=bc\Rightarrow\frac{a}{c}=\frac{b}{a}\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

Điều ngược lại cũng đúng:

\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\left(a+b\right)\left(c-a\right)=\left(c+a\right)\left(a-b\right)\)

\(ac\)-\(a^2-bc-ab=ac+a^2-bc-ab\)

=>2bc=\(2a^2\) =>\(a^2=bc\) (đpcm)

3 tháng 4 2020

Ý thứ 2 bạn nhân vế 1 với x, nhân vế 2 với y, nhân vế 3 với z.

Cộng lại với nhau sẽ được bz=cy; cx=az; ay=bx

=>\(\frac{b}{c}=\frac{z}{y}\) ; \(\frac{c}{a}=\frac{x}{z}\) => \(\frac{b}{y}=\frac{c}{z}\) ; \(\frac{c}{z}=\frac{a}{x}\) =>\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\) (đpcm)

8 tháng 8 2019

ở đây nha bn: https://hoc24.vn/hoi-dap/question/402510.html?pos=1029041

7 tháng 1 2016

mình ngại làm ra lắm bạn có thể mở bài 88 trang 29 sách nâng cao và một số chuyên đề toán 7

lời giải trang 94 nhé

tích luôn cho mình nha

23 tháng 2 2016

mk ko co quyen sach nang cao va 1so chuyen de toan

10 tháng 2 2023

Ta có : \(\dfrac{bz-cy}{a}\text{=}\dfrac{cx-az}{b}\text{=}\dfrac{ay-bx}{c}\)

\(\Rightarrow\dfrac{a\left(bz-cy\right)}{a^2}\text{=}\dfrac{b\left(cx-az\right)}{b^2}\text{=}\dfrac{c\left(ay-bx\right)}{c^2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a\left(bz-cy\right)}{a^2}\text{=}\dfrac{b\left(cx-az\right)}{b^2}\text{=}\dfrac{c\left(ay-bx\right)}{c^2}\text{=}\dfrac{abz-acy+bcz-baz+cay-cbx}{a^2+b^2+c^2}\text{=}0\)

\(\Rightarrow\dfrac{bz-cy}{a}\text{=}0\Rightarrow bz\text{=}cy\)

\(\Rightarrow\dfrac{b}{c}\text{=}\dfrac{y}{z}\left(1\right)\)

\(\dfrac{cx-az}{b}\text{=}0\Rightarrow cx\text{=}az\)

\(\Rightarrow\dfrac{c}{a}\text{=}\dfrac{z}{x}\left(2\right)\)

Từ (1) và (2):

\(\Rightarrow dpcm\)

9 tháng 10 2015

vế 1 thiếu x

vế 2 thiếu y

vế 3 thiếu z

nhấn ba vế với cái thiếu

ta có

\(\frac{bxz-cxy}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bxy}{cz}\)

Theo TCDTSBN`, ta có

 

\(\frac{bxz-cxy}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bxy}{cz}\)

= cộng chừng đó lại tử + tử, mẫu + mẫu

=0/(ax+by+cz)

=0

=>bzx=cxy

=>cxy=ayz

=>bxz=cxy=ayz

=>a:b:c=x:y:z

đó mỏi tay lắm rồi đó

4 tháng 12 2020

Ta có \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

=> \(\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}=\frac{abz-acy+bcx-baz+cay-cbx}{a^2+b^2+c^2}\)

                                                                                      \(=\frac{0}{a^2+b^2+c^2}=0\)

=> \(\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}}\Rightarrow\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\Rightarrow\hept{\begin{cases}\frac{z}{c}=\frac{y}{b}\\\frac{z}{c}=\frac{x}{a}\\\frac{y}{b}=\frac{x}{a}\end{cases}}\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(\text{đpcm}\right)\)

18 tháng 5 2016

Từ đề bài=>\(\frac{\left(bz-cy\right).a}{a^2}=\frac{\left(cx-az\right).b}{b^2}=\frac{\left(ay-bx\right).c}{c^2}\)

=>\(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)

Theo t/c dãy tỉ số=nhau:

\(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=\frac{0}{a^2+b^2+c^2}=0\)

=>abz-acy=0.a2=0=>abz=acy=>bz=cy

bcx-abz=0.b2=0=>bcx=abz=>cx=az

acy-bcx=0.c2=0=>acy=bcx=>ay=bx

Ta có: bx=ay và bz=cy=>\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\left(đpcm\right)\)