K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

có x+y=1 =>\(\left\{{}\begin{matrix}x-1=-y\\y-1=-x\end{matrix}\right.\)khí đó ta có biểu thức tương đương :

\(\dfrac{\left(x^2-1\right)\left(y^2-1\right)}{x^2y^2}=\dfrac{\left(x-1\right)\left(x+1\right)\left(y-1\right)\left(y+1\right)}{x^2y^2}=\dfrac{\left(-y\right)\left(x+1\right)\left(-x\right)\left(y+1\right)}{x^2y^2}=\dfrac{\left(x+1\right)\left(y+1\right)}{xy}=\dfrac{xy+x+y+1}{xy}=1+\dfrac{2}{xy}\)mà 1=x+y và x+y\(\ge\)2\(\sqrt{xy}\)=> (x+y)2 \(\ge\)4xy do đó 1= (x+y)2 \(\ge\)4xy

=> \(\dfrac{1}{4xy}\ge\dfrac{1}{\left(x+y\right)^2}=>\dfrac{1}{xy}\ge\dfrac{4}{\left(x+y\right)^2}=>\dfrac{2}{xy}\ge8\)=> biểu thức đã cho có GTNN là 9 khi x=y=\(\dfrac{1}{2}\)

18 tháng 12 2018

A=\(1+\dfrac{1}{y}+x+\dfrac{x}{y}+1+\dfrac{1}{x}+y+\dfrac{y}{x}\)
A= \(\left(x+\dfrac{1}{2x}\right)+\left(y+\dfrac{1}{2y}\right)+\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+2\)
Áp Dụng BĐT Cô si ta có:
\(\left(x+\dfrac{1}{2x}\right)\ge\sqrt{2}\); \(\left(y+\dfrac{1}{2y}\right)\ge\sqrt{2}\); \(\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\ge2\)
\(\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge2\sqrt{\dfrac{1}{2x.2y}}=\dfrac{1}{\sqrt{xy}}\ge\dfrac{\sqrt{2}}{\sqrt{x^2+y^2}}=\sqrt{2}\)
suy ra A\(\ge4+3\sqrt{2}\)
Dấu = xảy ra
\(\left\{{}\begin{matrix}x=y\\x=\dfrac{1}{2x}\\y=\dfrac{1}{2y}\end{matrix}\right.\)
\(\Leftrightarrow\)x=y=\(\dfrac{\sqrt{2}}{2}\)
Vậy Min A=4+3\(\sqrt{2}\) khi x=y=\(\dfrac{\sqrt{2}}{2}\)

NV
18 tháng 12 2018

Trước hết ta có \(\dfrac{\left(x+y\right)^2}{2}\le x^2+y^2\Rightarrow x+y\le\sqrt{2\left(x^2+y^2\right)}=\sqrt{2}\)

\(A=1+\dfrac{1}{y}+x+\dfrac{x}{y}+1+\dfrac{1}{x}+y+\dfrac{y}{x}\)

\(A=2+x+y+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{x}{y}+\dfrac{y}{x}\ge2+x+y+\dfrac{4}{x+y}+2\sqrt{\dfrac{x}{y}.\dfrac{y}{x}}\)

\(\Rightarrow A\ge4+x+y+\dfrac{4}{x+y}=4+x+y+\dfrac{2}{x+y}+\dfrac{2}{x+y}\)

\(\Rightarrow A\ge4+2\sqrt{\left(x+y\right).\dfrac{2}{\left(x+y\right)}}+\dfrac{2}{\sqrt{2}}=4+3\sqrt{2}\)

\(\Rightarrow A_{min}=4+3\sqrt{2}\) khi \(x=y=\dfrac{1}{\sqrt{2}}\)

5 tháng 6 2018

\(P=\dfrac{1}{2\left(x^2+y^2\right)}+\dfrac{4}{xy}+2xy\)

\(\Leftrightarrow2P=\dfrac{1}{x^2+y^2}+\dfrac{8}{xy}+4xy\)

\(\Leftrightarrow2P=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{4xy}+4xy+\dfrac{29}{4xy}\)

Áp dụng BĐT AM - GM , ta có :

\(\Leftrightarrow\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{4xy}+4xy+\dfrac{29}{4xy}\ge\dfrac{2}{\sqrt{\left(x^2+y^2\right)2xy}}+2\sqrt{\dfrac{1}{4xy}.4xy}+\dfrac{29}{4xy}\)

\(\Leftrightarrow2P\ge\)\(\dfrac{2}{\sqrt{\left(x^2+y^2\right)2xy}}+2+\dfrac{29}{4xy}\ge\dfrac{4}{\left(x+y\right)^2}+2+\dfrac{29}{\left(x+y\right)^2}\)

\(\Leftrightarrow2P\ge2+4+29=35\)

\(\Leftrightarrow P\ge\dfrac{35}{2}\)

\(\Rightarrow P_{Min}=\dfrac{35}{2}\Leftrightarrow x=y=\dfrac{1}{2}\)

5 tháng 4 2017

Ta có : \(\left(x-1\right)^2\ge0\Leftrightarrow\left(x+1\right)^2\ge4x\)

\(\left(y+1\right)^2\ge4y\)

Do đó : A \(\ge\dfrac{4x}{x}+\dfrac{4y}{y}=8\)

Dấu '' = '' xảy ra khi x = y = 1

Vậy min A là 8 khi x = y = 1

5 tháng 6 2022

C1:

\(x,y>0\)

\(M=\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2=x^2+2+\dfrac{1}{x^2}+y^2+2+\dfrac{1}{y^2}=\left(x^2+\dfrac{1}{16x^2}\right)+\left(y^2+\dfrac{1}{16y^2}\right)+\dfrac{15}{16}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+4\)Theo BĐT AM-GM (Caushy) ta có:

\(M=\left(x^2+\dfrac{1}{16x^2}\right)+\left(y^2+\dfrac{1}{16y^2}\right)+\dfrac{15}{16}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+4\ge2\sqrt{x^2.\dfrac{1}{16x^2}}+2\sqrt{y^2.\dfrac{1}{16y^2}}+\dfrac{15}{16}.2\sqrt{\dfrac{1}{x^2}.\dfrac{1}{y^2}}+4=\dfrac{1}{2}+\dfrac{1}{2}+4+\dfrac{15}{4}.\dfrac{1}{xy}\ge5+\dfrac{15}{4}.\dfrac{1}{\left(\dfrac{x+y}{2}\right)^2}\ge5+\dfrac{15}{4}.\dfrac{1}{\left(\dfrac{1}{2}\right)^2}=20\)Đẳng thức xảy ra \(\left\{{}\begin{matrix}x^2=\dfrac{1}{16}x^2\\y^2=\dfrac{1}{16}y^2\\x+y=1\\x,y>0\end{matrix}\right.\Leftrightarrow x=y=\dfrac{1}{2}\)

Vậy \(MinM=20\)

NV
9 tháng 12 2018

\(VT=\dfrac{\left(\dfrac{1}{z}\right)^2}{\dfrac{1}{x}+\dfrac{1}{y}}+\dfrac{\left(\dfrac{1}{x}\right)^2}{\dfrac{1}{y}+\dfrac{1}{z}}+\dfrac{\left(\dfrac{1}{y}\right)^2}{\dfrac{1}{x}+\dfrac{1}{z}}\ge\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}{2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)}=\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

Dâu "=" xảy ra khi \(x=y=z\)