K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2015

A B C M N E D NB =ND (gt)

a/ Xet tam giác AND và tam giác CNB ta có :

AN = NC (N là trung điểm AC) (1)

ND = NB (gt) (2)

góc AND = góc CND (2 góc đối đỉnh) (3)

Từ (1),(2),(3) => Tam giác AND = tam giác CNB (c-g-c)

b/

Ta có :

AD = CB (Tam giác AND = tam giác CNB)

Ta có :

góc ADN = góc CBN (Tam giác AND = tam giác CNB)

mà ADN và góc CBN nằm ở vị trí so le trong 

nên AD//BC

c/ Chứng minh A là trung điểm của DE

Ta có :

AD//BC(cm câu a)  (1)

A thuộc ED (gt) (2)

Từ (1),(2) => DE//BC

Xét tam giác AME và tam giác BMC ta có :

AM = BM (M là trung điểm AB) (1)

góc AME = góc BMC (2 góc đối đỉnh) (2)

góc MAE = góc MBC (2 góc so le trong và DE //BC) (3)

Từ (1),(2),(3) => Tam giác AME = tam giácBMC (g-c-g)

=> AE = BC (2 cạnh tương ứng)

Ta có :
 AE = BC (cmt) (1)

AD =CB (cm câu a) (2)

=> Từ (1),(2) => AE = AD

Ta có :

AE = AD (cmt) (1)

A thuộc DE (2)

Từ (1),(2) => A là trung điểm của đoạn thẳng DE

 

10 tháng 6 2020

Tự vẽ hình

a,AD ĐL py-ta-go vào \(\Delta\)vuông ABC có

\(BC^2=AB^2+AC^2\)

\(x^2=9^2+12^2\)

\(x^2=81+144\)

\(x^2=225\)

\(x=\sqrt{225}=15\)

b,Xét \(\Delta BAN\)và \(\Delta CDN\)có:

           BN=DN

         \(\widehat{BNA}=\widehat{DNC}\)

           NA=NC

\(\Rightarrow\Delta BNA=\Delta CDN\left(c.g.c\right)\)

c,Vì \(\Delta BNA=\Delta CND\left(cmt\right)\)

\(\Rightarrow\widehat{BAN}=\widehat{DCN}\)(2 cạnh t.ư)

Mà 2 góc này ở VTSLT

\(\Rightarrow CD//AB\)

tự vẽ hình nha

a)

vì M là trung điểm của BC

=> AM=MB=MC

xét tam giác MAC và tam giác MDB có:

MA=MD(gt)

\(\widehat{BMD}=\widehat{AMC}\)(đối đỉnh)

MB=MC(gt)

=> tam giác MAC=tam giác MDB (c.g.c)

b) tương tự đối với tam giác MAB và tam giác DCB

=>tam giác MAB=tam giác DCB (c.g.c)

c)xét tam giác ABC và tam giác DCB có:

BC cạnh chung

BA=DC( vì tam giác BMA=tam giác DMC)

BD=AC(vì tam giác MAC=tam giác MDB)

=> tam giác ABC=tam giác DCB (c.c.c)

d) (lớp 8 học) 

xét tứ giác ABDC có:

 BD=AC, BA=DC

=> ABDC là hình bình hành (1)

mà \(\widehat{A}=90^0\) (2)

=>ABDC là hình chữ nhật

=> \(\widehat{C}=90^0\)

xét tam giác BAN và tam giác CDN có

DC=BA(cm trên)

\(\widehat{A}=\widehat{C}=90^0\)

AN=NC (gt)

=>tam giác BAN=tam giác CDN (cgv-cgv)

=> BN=ND (đpcm)

e)

ta có MA=MC

=> MAC là tam giác cân tại M

=> \(\widehat{MAC}=\widehat{MCA}\)

xét tam giác AKN và tam giác CIN có:

\(\widehat{MAC}=\widehat{MCA}\)(cm trên)

AN=NC (gt)

\(\widehat{BNA}=\widehat{DNC}\)(vì tam giác BAN=tam giác DCN)

=> tam giác AKN=tam giác CIN (g.c.g)

=> NI=NK(cạnh tương ứng) (đpcm)

chúc bn học tốt

7 tháng 12 2019

Thanks bạn nha!!!