Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chúc mày học ngu
Chúc mày học ngu
Chúc mày học ngu
Chúc mày học ngu
bài 8
c) chứng minh \(\overline{aaa}⋮37\)
ta có: \(aaa=a\cdot111\)
\(=a\cdot37\cdot3⋮37\)
\(\Rightarrow aaa⋮37\)
k mk nha
k mk nha.
#mon
Bài 1 : Ta có : \(A=3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10\left(3^n-2^{n-1}\right)\)
\(=\overline{......0}\)
\(\Rightarrow\)Chữ số tận cùng của \(A\)là \(0\)
Bài 3:
a)Ta có : \(C=2+2^2+2^3+...+2^{99}+2^{100}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)+...+2^{96}\left(2+2^2+2^3+2^4\right)\)
\(=31+2^4.31+...+2^{96}.31\)
\(=31\left(1+2^4+...+2^{96}\right)⋮31\)
\(\Rightarrow\)\(đpcm\)
b) Ta có : \(C=2+2^2+2^3+...+2^{99}+2^{100}\)
\(\Rightarrow2C=2^2+2^3+2^4+...+2^{100}+2^{101}\)
\(\Rightarrow2C-C=\left(2^2+2^3+2^4+...+2^{100}+2^{101}\right)-\left(2+2^2+2^3+...+2^{99}+2^{100}\right)\)
\(\Rightarrow C=2^{101}-2\)
Mà \(2^{2x}-2=C\)
\(\Rightarrow2^{2x}-2=2^{101}-2\)
\(\Rightarrow2^{2x}=2^{101}\)
\(\Rightarrow2x=101\)
\(\Rightarrow x=\frac{101}{2}\)
Vậy \(x=\frac{101}{2}\)
Bài 2:
Ta có : \(\overline{abcd}=1000a+100b+10c+d\)
\(=1000a+96b+8c+\left(d+2c+4b\right)\)
\(=8\left(125a+12b+c\right)+\left(d+2c+4b\right)\)
Vì \(\hept{\begin{cases}d+2c+4b⋮8\\8\left(125a+12b+c\right)⋮8\end{cases}}\)
\(\Rightarrow\overline{abcd}⋮8\)
\(\Rightarrowđpcm\)
4,Tìm a, b ∈N, biết:
a,10a+168=b2
b,100a+63=b2
c,2a+124=5b
d,2a+80=3b
Giải:
a) xét \(a=0\)
\(\Rightarrow10^a+168=1+168=169=13^2\)
\(\Rightarrow\hept{\begin{cases}a=0\\b=13\end{cases}}\)
xét \(a\ne0\)
=>10a có tận cùng bằng 0
Mà 10a+168 có tận cùng bằng 8 không phải số chính phương ( các số chính phương chỉ có thể tận cùng là:0;1;4;5;6;9 )
=>không có b
vậy \(\hept{\begin{cases}a=0\\b=13\end{cases}}\)
b)Chứng minh tương tự câu a)
c) \(5^b\)là số lẻ với b là số tự nhiên và tận cùng là 5
\(\Rightarrow2^a+124\)cũng là số lẻ và tận cùng là 5
Mà \(2^a+124\) là số lẻ khi và chỉ khi a=0
ta có :
2^0 + 124 = 5^b
=> 125 = 5^b
=> 5^3 = 5^b
=> b = 3
Vậy a = 0 ; b =3
d)Chứng minh tương tự như 2 câu mẫu trên
3,Cho B=34n+3+2013
Chứng minh rằng B⋮10 với mọi n∈N
Giải:
Ta có :
34n+3+2013
=(34)n+27+2013
=81n+2040
Phần sau dễ rồi ,mk nghĩ bạn có thể giải đc