Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
`1,`
`a)`
\(A(x) = 5x^5 + 2 - 7x - 4x^2 - 2x^5\)
`= (5x^5 - 2x^5) - 4x^2 - 7x + 2`
`= 3x^5 - 4x^2 - 7x + 2`
`b)`
`A(x)+B(x)`
`=`\((3x^5 - 4x^2 - 7x + 2)+(-3x^5 + 4x^2 + 3x - 7)\)
`= 3x^5 - 4x^2 - 7x + 2-3x^5 + 4x^2 + 3x - 7`
`= (3x^5 - 3x^5) + (-4x^2 + 4x^2) + (-7x + 3x) + (2-7)`
`= -4x - 5`
`b)`
`A(x) - B(x)`
`= 3x^5 - 4x^2 - 7x + 2 + 3x^5 - 4x^2 - 3x + 7`
`= (3x^5 + 3x^5) + (-4x^2 - 4x^2) + (-7x - 3x) + (2+7)`
`= 6x^5 - 8x^2 - 10x + 9`
`c)`
Thay `x=-1` vào đa thức `A(x)`
` 3*(-1)^5 - 4*(-1)^2 - 7*(-1) + 2`
`= 3*(-1) - 4*1 + 7 + 2`
`= -3 - 4 + 7 + 2`
`= -7+7 + 2`
`= 2`
Bạn xem lại đề ;-;.
`2,`
`M =` \(( 3 x - 2 )( 2 x + 1 )-( 3 x + 1 )( 2 x - 1 )\)
`= 3x(2x+1) - 2(2x+1) - [3x(2x-1) + 2x - 1]`
`= 6x^2 + 3x - 4x - 2 - (6x^2 - 3x + 2x - 1)`
`= 6x^2 - x - 2 - (6x^2 - x - 1)`
`= 6x^2 - x - 2 - 6x^2 + x + 1`
`= (6x^2 - 6x^2) + (-x+x) + (-2+1)`
`= -1`
Vậy, giá trị của biểu thức không phụ thuộc vào giá trị của biến.
2:
M=6x^2+3x-4x-2-6x^2+3x-2x+1
=-1
1;
a: A(x)=3x^5-4x^2-7x+2
b: B(x)=-3x^5+4x^2+3x-7
B(x)+A(x)
=-3x^5-4x^2-7x+2+3x^5+4x^2+3x-7
=-4x-5
A(x)-B(x)
=-3x^5-4x^2-7x+2-3x^5-4x^2-3x+7
=-6x^5-8x^2-10x+9
a) P(x) = – x6 – x4 – 4x3 + 3x2+ 5
Q(x) = 2x5 – x4 – x3 + x – 1
b) P(x) + Q(x) = – x6 + 2x5– 2x4 – 5x3 + 3x2+ x + 4
P(x) – Q(x) = – x6 – 2x5 – 3x3 + 3x2– x + 6
a: \(A\left(x\right)=2x^4-x^3+3x^2+9x-2\)
\(B\left(x\right)=2x^4-5x^3-x+9\)
\(C\left(x\right)=x^4+4x^2+5\)
A(x): bậc 4; hệ số cao nhất là 2; hệ số tự do là -2
B(x): bậc 4; hệ số cao nhất là 4; hệ số tự do là 9
b: M(x)=A(x)+B(x)=4x^4-6x^3+3x^2+8x+7
N(x)=B(x)-A(x)=-4x^3-3x^2-10x+11
c: Q(x)=-N(x)=4x^3+3x^2+10x-11
P(x) = 2 + 5x2 – 3x3 + 4x2 –2x – x3 + 6x5
P(x) = 2 + (5x2+ 4x2) + (– 3x3– x3) – 2x + 6x5
P(x) = 2 + 9x2 – 4x3– 2x + 6x5
Sắp xếp các hạng tử của P(x) theo lũy thừa giảm của biến, ta có
P(x) = 6x5 – 4x3 + 9x2 – 2x + 2
a,A(\(x\)) = 13\(x^4\) + 3\(x^2\) + 15\(x\) - 8\(x\) - 7 - 7\(x\) + 7\(x^2\) - 10\(x^4\)
A(\(x\)) = (13\(x^4\) - 10\(x^4\)) + (3\(x^2\) + 7\(x^2\)) + (15\(x\) - 8\(x\) - 7\(x\)) - 7
A(\(x\)) = 3\(x^4\) + 10\(x^2\) + 0 - 7
A(\(x\)) = 3\(x^4\) + 10\(x^2\) - 7
B(\(x\)) = -4\(x^4\) - 10\(x^2\) + 10 + 5\(x^4\) - 3\(x\) - 18 + 30 - 5\(x^2\)
B(\(x\)) = (-4\(x^4\) + 5\(x^4\)) - (10\(x^2\) + 5\(x^2\)) - 3\(x\) + (10 + 30 - 18)
B(\(x\)) = \(x^4\) - 15\(x^2\) - 3\(x\) + 22
b,C(\(x\)) = A(\(x\)) + B(\(x\)) = 3\(x^4\) + 10\(x^2\) - 7 + \(x^4\) - 15\(x^2\) - 3\(x\) + 22
C(\(x\)) = 4\(x^4\) - (15\(x^2\) - 10\(x^2\)) - 3\(x\) + 22
C(\(x\)) = 4\(x^4\) - 5\(x^2\) - 3\(x\) + 15
c, D(\(x\)) = B(\(x\)) - A(\(x\)) = \(x^4\) - 15\(x^2\) - 3\(x\) + 22 - 3\(x^4\) - 10\(x^2\) + 7
D(\(x\)) = (\(x^4\) - 3\(x^4\)) - (15\(x^2\) + 10\(x^2\)) + (22 + 7)
D(\(x\)) = - 2\(x^4\) - 25\(x^2\) + 29
d, Thay \(x\) = 1 vào C(\(x\)) ta có: C(1) = 4.14 - 5.12 -3.1 + 15 = 11 (xem lại đề bài em nhá)
Ta có: \(P\left(x\right)=x^2+5x^4-3x^3+x^2+4x^4+3x^3-x+5\)
\(=9x^4+2x^2-x+5\)
Ta có: \(Q\left(x\right)=x-5x^3-x^2-x^4+4x^3-x^2-3x-1\)
\(=-x^4-x^3-2x^2-2x-1\)
Ta có: P(x)+Q(x)
\(=9x^4+2x^2-x+5-x^4-x^3-2x^2-2x-1\)
\(=8x^4-x^3-3x+4\)
Ta có: P(x)-Q(x)
\(=9x^4+2x^2-x+5+x^4+x^3+2x^2+2x+1\)
\(=10x^4+x^3+4x^2+x+6\)
Sử dụng định lý Bezout:
a/ \(g\left(x\right)=0\Rightarrow\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(f\left(x\right)⋮g\left(x\right)\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(2\right)=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)
b/ \(g\left(x\right)=0\Rightarrow x=-1\)
\(\Rightarrow f\left(-1\right)=0\Rightarrow-a+b=2\Rightarrow b=a+2\)
Tất cả các đa thức có dạng \(f\left(x\right)=2x^3+ax+a+2\) đều chia hết \(g\left(x\right)=x+1\) với mọi a
c/ \(g\left(x\right)=0\Rightarrow x=-2\Rightarrow f\left(-2\right)=0\Rightarrow4a+b=-30\)
\(2x^4+ax^2+x+b=\left(x^2-1\right).Q\left(x\right)+x\)
Thay \(x=1\Rightarrow a+b=-2\)
\(\Rightarrow\left\{{}\begin{matrix}4a+b=-30\\a+b=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{28}{3}\\b=\frac{22}{3}\end{matrix}\right.\)
d/ Tương tự: \(\left\{{}\begin{matrix}f\left(2\right)=8a+4b-40=0\\f\left(-5\right)=-125a+25b-75=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\\b=\end{matrix}\right.\)
a) Để thu gọn đa thức Px, ta sắp xếp các hạng tử theo lũy thừa giảm dần của biến x:
Px = x⁴ - 2x³ + x - 5 + / 3x / -2x + 2x³ = x⁴ + 2x³ - 2x³ + x + / 3x / -2x = x⁴ + (2x³ - 2x³) + (x + / 3x / -2x) = x⁴ + (x + / 3x / -2x)
Tương tự, để thu gọn đa thức Qx, ta sắp xếp các hạng tử theo lũy thừa giảm dần của biến x:
Qx = (2x² - x³) - (2 - x⁴ - x³) - 3x = -x³ + 2x² - 2 + x⁴ + x³ - 3x = x⁴ + (-x³ + x³) + 2x² - 3x - 2 = x⁴ + 2x² - 3x - 2
b) Để tính Ax = Px - Qx, ta trừ từng hạng tử của Qx từ Px:
Ax = (x⁴ + (x + / 3x / -2x)) - (x⁴ + 2x² - 3x - 2) = x⁴ + x + / 3x / -2x - x⁴ - 2x² + 3x + 2 = x⁴ - x⁴ + x + / 3x / -2x - 2x² + 3x + 2 = x + / 3x / -2x - 2x² + 3x + 2
c) Để chứng tỏ x = 1 là một nghiệm của đa thức Ax, ta thay x = 1 vào Ax và kiểm tra xem kết quả có bằng 0 hay không:
Ax = 1 + / 3(1) / -2(1) - 2(1)² + 3(1) + 2 = 1 + 3/2 - 2 + 3 + 2 = 6.5
Vì Ax không bằng 0 khi thay x = 1, nên x = 1 không phải là một nghiệm của đa thức Ax.
a: P(x)=x^4-2x^3+x+2x^3-2x-5+3x
=x^4-x+3x-5
=x^4+2x-5
Q(x)=2x^2-x^3-2+x^4+x^3-3x
=x^4+2x^2-3x-2
b: A(x)=P(x)-Q(x)
=x^4+2x-5-x^4-2x^2+3x+2
=-2x^2+5x-3
c: A(1)=-2+5-3=0
=>x=1 là nghiệm của A(x)