Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có gì đâu nhỉ?
Cauchy-Schwarz:
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{\left(1+1+1\right)^2}{2\left(a+b+c\right)}=\dfrac{9}{2\left(a+b+c\right)}=\dfrac{4,5}{a+b+c}>\dfrac{3}{a+b+c}\)
áp dụng BĐT cauchy- schwarz ta có
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{\left(1+1+1\right)^2}{2\left(a+b+c\right)}\)
⇔ \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{9}{2\left(a+b+c\right)}\)
⇔ \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{3}{a+b+c}\) (đpcm)
Ta có:
\(\sum\dfrac{ab+c}{c+1}=\sum\dfrac{ab+c}{a+c+b+c}\le\sum\dfrac{ab+c}{4}.\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)=\dfrac{a+b+c+3}{4}=\dfrac{4}{4}=1\)
Ta có : \(\frac{ab+c}{c+1}=\frac{ab+c\left(a+b+c\right)}{c+a+b+c}=\frac{a\left(b+c\right)+c\left(b+c\right)}{c+a+b+c}=\frac{\left(a+c\right)\left(b+c\right)}{c+a+b+c}\)
Do \(a;b;c>0\Rightarrow a+c;b+c>0\)
Áp dụng BĐT phụ : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) , ta có :
\(\frac{ab+c}{c+1}\le\frac{\left(a+c\right)\left(b+c\right)}{4}\left(\frac{1}{c+a}+\frac{1}{b+c}\right)=\frac{\left(a+c\right)\left(b+c\right)}{4}.\frac{a+b+c+c}{\left(a+c\right)\left(b+c\right)}=\frac{c+1}{4}\left(1\right)\)
Tương tự , ta có : \(\frac{bc+a}{a+1}\le\frac{a+1}{4}\) ; \(\frac{ac+b}{b+1}\le\frac{b+1}{4}\left(2\right)\)
Từ ( 1 ) ; ( 2 ) có : \(\frac{ab+c}{c+1}+\frac{bc+a}{a+1}+\frac{ac+b}{b+1}\le\frac{a+1+b+1+c+1}{4}=\frac{a+b+c+3}{4}=1\)
Dấu " = " xảy ra <=> \(a=b=c=\frac{1}{3}\)
Vậy ...
Đặt vế trái BĐT cần chứng minh là P
Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) ( Tự chứng minh BĐT này ), ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
\(\Rightarrow\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}\le\dfrac{1}{\dfrac{4}{a+b}}=\dfrac{a+b}{4}\left(1\right)\)
Tương tự: \(\dfrac{1}{\dfrac{1}{b}+\dfrac{1}{c}}\le\dfrac{b+c}{4}\left(2\right)\)
\(\dfrac{1}{\dfrac{1}{c}+\dfrac{1}{a}}\le\dfrac{c+a}{4}\left(3\right)\)
Cộng \(\left(1\right),\left(2\right),\left(3\right)\) vế theo vế, ta được:
\(P\le\dfrac{a+b+b+c+c+a}{4}=\dfrac{a+b+c}{2}\)
Dấu ''='' xảy ra khi và chỉ khi a=b=c
giả sử \(\dfrac{a+b}{2a-b}\dfrac{c+b}{2c-b}< 4\)
\(< =>\dfrac{a+b}{2a-b}+\dfrac{c+b}{2c-b}-4< 0\)
\(< =>\dfrac{2ac-ab+2bc-b^2+2ac-bc+2ab-b^2-2bc+4b^2+4ac-2ab}{4ac-2ab-2bc+b^2}< 0\)
<=> \(\dfrac{8ac-bc-ab+2b^2}{4ac-2\left(ab+bc\right)+b^2}< 0\)
\(\left(do\dfrac{1}{a}+\dfrac{1}{c}=\dfrac{2}{b}< =>\dfrac{a+c}{ac}=\dfrac{2}{b}< =>ab+bc=2ac\right)\)
<=> \(\dfrac{8ac-2ac+2b^2}{b^2}< 0< =>\dfrac{6ac+2b^2}{b^2}< 0\)
mà a,b,c là số dương theo giả thiết nên \(\dfrac{6ac+2b^2}{b^2}\)không thể bé hơn 0
=> giả sử sai => \(\dfrac{a+b}{2a-b}+\dfrac{c+b}{2c-b}-4\) phải lớn hơn hoặc bằng 0
=> \(\dfrac{a+b}{2a-b}+\dfrac{c+b}{2c-b}\) lớn hơn hoặc bằng 4 (Đpcm)
mình nghĩ nếu giải bám sát thì sẽ xác thực hơn là giải sử vậy cách giải nên chỉ tính cái cần cm minh rồi đổi vế rồi dựa vào điều kiện người ta cho thì hay hơn
Bài 1:a,b,c ba cạnh tam giác => a,b,c dương
\(\left\{{}\begin{matrix}a+c>b\\a+b>c\\b+c>a\end{matrix}\right.\) ta có: \(\dfrac{x}{y}< \dfrac{x+p}{y+p}\forall_{x,y,p>0\&x< y}\)
\(VT=\dfrac{a}{a+b}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a+c}{a+b}+\dfrac{b}{c+a}< \dfrac{a+c+c}{a+b+c}+\dfrac{b+b}{a+b+c}=\)
\(=\dfrac{a+b+c+b+c}{a+b+c}< \dfrac{\left(a+b+c\right)+\left(A+b+c\right)}{a+b+c}< \dfrac{2\left(b+a+c\right)}{a+b+c}=2=VP\)
p/s: đề sao làm vậy:
mình nghi đề phải thế này: \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\) cách làm đơn giản hơn
Áp dụng BĐT Cauchy schwarz dạng phân thức ta có :
\(\dfrac{a^2}{1+b-a}+\dfrac{b^2}{1+c-b}+\dfrac{c^2}{1+a-c}\ge\dfrac{\left(a+b+c\right)^2}{3}\ge\dfrac{3\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=1\)
( vì \(a^2+b^2+c^2\ge ab+bc+ca\) )
Xảy ra đẳng thức khi và chỉ khi a=b=c= \(\sqrt{\dfrac{1}{3}}\)
Nội suy Sửa đề làm cho bạn
Bài 1:
\(a^2+b^2+c^2\ge ab+bc+ac+\dfrac{\left(a-b\right)^2}{26}+\dfrac{\left(b-c\right)^2}{2}+\dfrac{\left(c-a\right)^2}{2009}\)Nhân 2 chuyển Vế
\(2a^2+2b^2+2c^2-2ab-2bc-2ac-\left[\dfrac{\left(a-b\right)^2}{13}+\dfrac{\left(b-c\right)^2}{3}+\dfrac{2\left(c-a\right)^2}{2009}\right]\ge0\)Ghép Bình phướng
\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2-\left[\dfrac{\left(a-b\right)^2}{13}+\dfrac{\left(b-c\right)^2}{3}+\dfrac{2.\left(c-a\right)^2}{2009}\right]\ge0\)Ghép nhân tử
\(\left[\left(a-b\right)^2\left(1-\dfrac{1}{13}\right)+\left(b-c\right)^2\left(1-\dfrac{1}{3}\right)+\left(c-a\right)^2\left(1-\dfrac{2}{2009}\right)\right]\ge0\)
Thu gọn có thể không cần
\(\left[\left(a-b\right)^2\left(\dfrac{12}{13}\right)+\left(b-c\right)^2\left(\dfrac{2}{3}\right)+\left(c-a\right)^2\left(\dfrac{207}{2009}\right)\right]\ge0\)VT là tổng 3 số không âm
Đẳng thức khi a=b=c
=> dpcm
1) xét hiệu
\(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{4}{a+b}\ge0\)
<=> \(\dfrac{b\left(a+b\right)}{ab\left(a+b\right)}+\dfrac{a\left(a+b\right)}{ab\left(a+b\right)}-\dfrac{4ab}{ab\left(a+b\right)}\ge0\)
=> b(a+b)+a(a+b)-4ab ≥ 0
<=> ab+b2+a2+ab-4ab ≥ 0
<=> a2 -2ab+b2 ≥ 0
<=> (a-b)2 ≥ 0 (luôn đúng )
=> đpcm
2)Ta có:\(\left(a-b\right)^2\ge0\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Rightarrow\left(a+b\right)^2\ge4ab\)
TT\(\Rightarrow\left(b+c\right)^2\ge4bc;\left(c+a\right)^2\ge4ca\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\ge64a^2b^2c^2\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)