\(A=\left(-7x^2y^3\right).\left(-3x^3y^5\right)\)

và 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2019

\(B=\left(-\frac{1}{3}xy^2\right)\cdot\left(-3x^3y^2\right)=x^4y^4\)

hệ số là 1, bậc 4

8 tháng 5 2019

\(B=\left(-\frac{1}{3}xy^2\right).\left(-3x^3y^2\right)\)

\(=\left(-\frac{1}{3}.-3\right).\left(xy^2.x^3y^2\right)\)

\(=x^4y^4\)

Hệ số của đa thức là 1

Bậc của đơn thức là 8

30 tháng 3 2017

cho vài k đi bà con ơi

18 tháng 6 2019

Bài 2 

\(a,\)\(\left(x^2+7\right)\left(x^2-49\right)< 0\)

Vì \(x^2+7>0\)\(\Rightarrow x^2-49< 0\)

\(\Rightarrow\left(x-7\right)\left(x+7\right)< 0\)

\(...\)

18 tháng 6 2019

Bài 2:

a) \(\left(x^2+7\right).\left(x^2-49\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x^2+7< 0\\x^2-49>0\end{cases}}\)hoặc \(\hept{\begin{cases}x^2+7>0\\x^2-49< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2< -7\\x^2>49\end{cases}\left(loai\right)}\)hoặc \(\hept{\begin{cases}x^2>-7\\x^2< 49\end{cases}}\)

\(\Leftrightarrow-7< x^2< 49\)

Mà \(x^2\ge0\)và  \(x^2\)là 1 SCP

\(\Rightarrow x^2\in\left\{1;4;9;16;25;36\right\}\)

\(\Rightarrow x\in\left\{1;2;3;4;5;6\right\}\)

Vậy \(x\in\left\{1;2;3;4;5;6\right\}\)

a: =>-3/2+x-7=5-1/3x+4/15

=>4/3x=413/30

hay x=413/40

b: \(\Leftrightarrow5-\dfrac{3}{2}x=-\dfrac{22}{3}\cdot\dfrac{-11}{8}=\dfrac{121}{12}\)

=>3/2x=-61/12

hay x=-61/18

c: (3x+2)2+|3x+2y|=0

=>3x+2=0 và 3x=-2y

=>x=-2/3 và -2y=-2

=>(x,y)=(-2/3;1)

AH
Akai Haruma
Giáo viên
9 tháng 8 2021

1.

Do: $(x-3y)^2\geq 0; (2x-1)^4\geq 0$ với mọi $x,y\in\mathbb{R}$

$\Rightarrow A\geq 0+0+3=3$
Vậy $A_{\min}=3$. Giá trị này đạt tại $x-3y=2x-1=0$

$\Leftrightarrow x=\frac{1}{2}; y=\frac{1}{6}$

2.

$|x-2|\geq 0$

$|3x-2y|\geq 0$

$\Rightarrow B\geq 0+0-4=-4$

Vậy $B_{\min}=-4$

Giá trị này đạt tại $x-2=3x-2y=0\Leftrightarrow x=2; y=3$

 

AH
Akai Haruma
Giáo viên
9 tháng 8 2021

3.

$|x+1|\geq 0, \forall x\in\mathbb{R}$

$|y-3|\geq 0, \forall y\in\mathbb{R}$

$\Rightarrow |x+1|+|y-3|+2\geq 2$

$\Rightarrow \frac{1}{|x+1|+|y-3|+2}\leq \frac{1}{2}$

$\Rightarrow C\geq \frac{-4}{2}=-2$

Vậy $C_{\min}=-2$. Giá trị này đạt tại $x+1=y-3=0$

$\Leftrightarrow x=-1; y=3$

4. Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$|x-5|+|x-1|=|5-x|+|x-1|\geq |5-x+x-1|=4$

$\Rightarrow D=|x-5|+|x-1|+7\geq 11$

Vậy $D_{\min}=11$. Giá trị này đạt tại $(5-x)(x-1)\geq 0$

$\Leftrightarrow 5\geq x\geq 1$

29 tháng 7 2017

b) Ta có :

\(VT=\left(4x-3y+2\right)-\left(3x-4y+2\right)\)

\(=4x-3y+2-3x+4y-2\)

\(=\left(4x-3x\right)-\left(3y-4y\right)+\left(2-2\right)\)

\(=x+y\)

\(VP=\left(2x+2y\right)-\left(x+y\right)=2x+2y-x-y\)

\(=\left(2x-x\right)+\left(2y-y\right)\)

\(=x+y\)

\(\Rightarrow VT=VP\)

\(\Rightarrow\)đpcm