Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: a>b => 2a > 2b (nhân 2 vế với 2)
=> 2a - 3 > 2b - 3 (cộng 2 vế với -3)
b) Ta có: -4a+1 < -4b+ 1 => -4a < -4b ( cộng 2 vế với -1)
=> a > b (nhân 2 vế với -1/4)
c) Ta có: 3-4a < 5c+2 => 3-4a-3 < 5c+2-3 (cộng 2 vế với -3)
=> -4a < 5c-1
Mà 5c-1 < -4b nên -4a < -4b => a > b (nhân cả 2 vế với -1/4)
b: a>b
=>-4a<-4b
=>-4a+7<-4b+7
a: TH1: x>=2
=>2x-4=3-3x
=>5x=7
=>x=7/5(loại)
TH2: x<2
=>4-2x=3-3x
=>x=-1(nhận)
A . 3x + 2(x + 1) = 6x - 7
<=> 3x + 2x + 2 = 6x -7
<=> 5x - 6x = -7 - 2
<=> -x = -9
<=> x =9
B . \(\frac{x+3}{5}\).< \(\frac{5-x}{3}\)
=> 3(x +3) < 5(5 -x)
<=> 3x+9 < 25 - 5x
<=> 3x + 5x < 25 - 9
<=> 8x < 16
<=> x < 2
C . \(\frac{5}{x+1}\)+ \(\frac{2x}{x^2-3x-4}\)=\(\frac{2}{x-4}\)
<=> \(\frac{5}{x+1}\)+ \(\frac{2x}{x^2+x-4x-4_{ }}\)= \(\frac{2}{x-4}\)
<=> \(\frac{5}{x+1}\)+ \(\frac{2x}{\left(x+1\right)\left(x-4\right)}\)= \(\frac{2}{x-4}\)
<=> 5(x - 4) + 2x = 2(x +1)
<=> 5x - 20 + 2x = 2x + 2
<=>7x - 2x = 2 + 20
<=> 5x = 22
<=> x =\(\frac{22}{5}\)
Dể \(\left|x-7\right|=3x-1\) có nghiệm thì \(3x-1\ge0\)
\(\Leftrightarrow x\ge\frac{1}{3}\)
Khi đó phương trình trở thành
\(\orbr{\begin{cases}x-7=3x-1\\x-7=1-3x\end{cases}\Leftrightarrow}\orbr{\begin{cases}-2x=6\\4x=8\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\left(ktm\right)\\x=2\left(tm\right)\end{cases}}\)
Mấy cái phương trình đó bạn tự giải nhé
Vậy.......................................................................................................
\(0,2x< 0,6\Leftrightarrow x< 3\)(cái này bạn cũng tự giải nốt nhé)
a) \(|x-7|=3x-1\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=1-3x\\x-7=3x-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4x=8\\-2x=6\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
Vậy phương trình có tập nghiệm \(S=\left\{-3;2\right\}\)
b) \(0,2x< 0,6\)
\(\Leftrightarrow x< 3\)
Vậy phương trình có tập nghiệm \(\left\{x/x< 3\right\}\)
c) \(4a< 3a\)
\(\Leftrightarrow a< 0\)
Vậy nếu 4a < 3a thì a âm
1a)
ĐKXĐ :
x\(\ne\)0 ;x+1\(\ne\)0
<=>x\(x\ne0;x\ne-1\)
b)
3/x = 2/x+1
<=>3(x+1) / x(x+1) = 2x / x( x + 1 )
<=>3(x+1)=2x <=> 3x+3=2x
<=>x=-3(thỏa ĐKXĐ)
Vậy S={-3}
2)
\(x+2\ge0\)
<=>\(x\ge-2\)
Vậy S={ \(x\)/\(x\ge-2\)}
0 -2
Vì a>b(1) nên
nhân hai vế bất đẳng thức(1) cho 4 ta được:4a>4b(2)
cộng hai vế bất đẳng thức(2) cho 3 ta được : 4a+3>4b+3
b) Ta có : 5c - 1 < - 4b \(\Rightarrow\)5c -1 + 3 < - 4b + 3 \(\Rightarrow\)5c + 2 < 3 - 4b
Mà 5c + 2 > 3 - 4a \(\Rightarrow\)3 - 4a < 5c + 2 < 3 - 4b \(\Rightarrow\)3 - 4a < 3 - 4b \(\Rightarrow\)4a < 4b \(\Rightarrow\)a < b
Vậy nếu 3 - 4a < 5c + 2 và 5c - 1 < - 4b thì a < b .
Câu 1 :
a, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}=\frac{2x-1}{3}-\frac{3-x}{4}\)
\(\Leftrightarrow\frac{6x+3}{4}+\frac{3-x}{4}=\frac{2x-1}{3}+\frac{5x+3}{6}\)
\(\Leftrightarrow\frac{5x+6}{4}=\frac{9x+1}{6}\Leftrightarrow\frac{30x+36}{24}=\frac{36x+4}{24}\)
Khử mẫu : \(30x+36=36x+4\Leftrightarrow-6x=-32\Leftrightarrow x=\frac{32}{6}=\frac{16}{3}\)
tương tự
\(\frac{19}{4}-\frac{2\left(3x-5\right)}{5}=\frac{3-2x}{10}-\frac{3x-1}{4}\)
\(< =>\frac{19.5}{20}-\frac{8\left(3x-5\right)}{20}=\frac{2\left(3-2x\right)}{20}-\frac{5\left(3x-1\right)}{20}\)
\(< =>95-24x+40=6-4x-15x+5\)
\(< =>-24x+135=-19x+11\)
\(< =>5x=135-11=124\)
\(< =>x=\frac{124}{5}\)
1)a<b
<=>4a<4b
<=>4a-7<4b-7
<=>1/(4a-7)>1/(4b-7)
<=>3/(4a-7)>3/(4b-7)
2) TH1: x-2>=0; x>=2; |x-2|=x-2
3x+x-2=4 <=> x=1,5 (loại)
TH2: x-2<0; x<2; |x-2|=2-x
3x+2-x=4 <=> x=1 (chọn)
Vậy x=1