K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

a ) \(a\left(a-1\right)-\left(a+3\right)\left(a+2\right)\)

\(=a^2-a-a^2-3a-2a-6\)

\(=-6a-6\)

\(=6\left(-a-1\right)⋮6\left(đpcm\right)\)

b ) \(a\left(a+2\right)-\left(a-7\right)\left(a-5\right)\)

\(=a^2+2a-\left(a^2-7a-5a+35\right)\)

\(=a^2+2a-a^2+7a+5a-35\)

\(=14a-35\)

\(=7\left(2a-5\right)⋮7\left(đpcm\right)\)

c ) \(a\left(b+1\right)+b\left(a+1\right)=\left(a+1\right)\left(b+1\right)\)

\(\Leftrightarrow ab+a+ab+b=ab+b+a+1\)

\(\Leftrightarrow ab=1\left(đpcm\right)\)

17 tháng 8 2018

Các bn giúp mk vs!

27 tháng 7 2016

Bài 4 :

Thay x=y+5 , ta có :

a ) ( y+5)*(y5+2)+y*(y-2)-2y*(y+5)+65

=(y+5)*(y+7)+y^2-2y-2y^2-10y+65

=y^2+7y+5y+35-y^2-2y-2y^2-10y+65

= 100

Bài 5 :

A = 15x-23y

B = 2x-3y

Ta có : A-B

= ( 15x -23y)-(2x-3y)

=15x-23y-2x-3y

=13x-26y

=13x*(x-2y) chia hết cho 13 

=> Nếu A chia hết cho 13 thì B chia hết cho 13 và ngược lại 

Bài 1: 

Đặt G(x)=0

\(\Leftrightarrow3\cdot\left(5x-1\right)\left(3x-1\right)=0\)

=>(5x-1)(3x-1)=0

=>5x-1=0 hoặc 3x-1=0

=>x=1/5 hoặc x=1/3

16 tháng 3 2019

Câu a:

TH1 : $n = 3k$

thì $2^n - 1 = 2^{3k} - 1 = 8^k - 1 = (8-1)A = 7A$ chia hết cho $7$

TH2 : $n = 3k+1$

thì $2^n - 1 = 2^{3k+1} - 1 = 2\cdot 8^{k} - 1 = 2(8^k - 1) + 1 = 2\cdot (8-1)A + 1 = 2\cdot 7A + 1$ chia $7$ dư $1$ nên $2^n-1$ không chia hết cho $7$

TH3 : $n = 3k+2$

thì $2^n - 1 = 2^{3k+2} - 1 = 4\cdot 8^k - 1 = 4(8^k - 1) + 3 = 4\cdot (8 - 1)A + 3 = 4\cdot 7A + 3$ chia $7$ dư $3$ nên $2^n-1$ không chia hết cho $7$

Vậy với mọi $n \in \mathbb{Z^+}$ chia hết cho $3$ thì $2^n-1$ chia hết cho $7$

-Nguyễn Thành Trương-

16 tháng 3 2019

Câu 1b)

+ Với n = 2 ⇒ 3^2−1=8 chia hết cho 8
+ Giả sử với n = k ( k > 1) thì 3^k−1 cũng chia hết cho 8
+ Ta phải chức minh với n = k + 1 thì 3^n − 1 cũng chia hết cho 8 3^n−1=3^k+1−1=3.3^k−1=3.3^k−3=8=3(3^k−1)+8
Ta có 3^k−1 chia hết cho 8
⇒3(3^k−1)chia hết cho 8; 8 chia hết cho 8
=> 3^k+1−1 chia hết cho 8
Kết luận 3^n−1 chia hết cho 8 với n∈N

24 tháng 8 2018

1.

Đặt \(1995^{1995}=a=a_1+a_2+a_3+...+a_n\)

Gọi \(S=a_1^3+a_2^3+...+a_n^3=a_1^3+a_2^3+...+a_n^3-a+a\)

\(S=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)+a\)

Vì mỗi dấu ngoặc đều chia hết cho 6 do là tích 3 số tự nhiên liên tiếp

\(\Rightarrow S\) chia 6 dư a

\(1995\equiv3\left(mod6\right)\Rightarrow1995^{1995}\equiv3\left(mod6\right)\)

Vậy S chia 6 dư 3

2.

\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}=\left(B\left(25\right)-1\right)^{10}=B\left(25\right)+1\)

Vì 2100 chẵn nên 3 chữ số tận cùng của nó chẵn nên có thể là 126; 376; 626; 876

Lại có 2100 chia hết cho 8 => ba chữ số tận cùng chi hết cho 8

=> Ba CTSC là 376

3.

\(22^{22}+55^{55}=\left(BS7+1\right)^{22}+\left(BS7-1\right)^{55}=BS7+1+BS7-1=BS7⋮7\)

\(3^{1993}=3\cdot\left(3^3\right)^{664}=3\cdot\left(BS7-1\right)^{664}=3\left(BS7+1\right)=BS7+3\) nên chia 7 dư 3

\(1992^{1993}+1994^{1995}=\left(BS7-3\right)^{1993}+\left(BS7-1\right)^{1995}=BS7-3^{1993}+BS7-1=BS7-\left(BS7+3\right)+BS7-1=BS7-4\) chia 7 dư 3

\(3^{2^{1930}}=3^{2860}=3\cdot\left(3^3\right)^{953}=3\cdot\left(BS7-1\right)^{953}=3\left(BS7-1\right)=BS7-3\) chia 7 dư 4

4.

\(2^{1994}=2^2\cdot\left(2^3\right)^{664}=4\left(BS7+1\right)^{664}=4\left(BS7+1\right)=BS7+4\) chia 7 dư 4

\(3^{1998}+5^{1998}=\left(3^3\right)^{666}+\left(5^2\right)^{999}=\left(BS7-1\right)^{666}+\left(BS7-1\right)^{999}=BS7+1+BS7-1=BS7⋮7\)

\(A=1^3+2^3+3^3+...+99^3=\left(1+2+...+99\right)^2=B^2⋮B\)

CM bằng quy nạp (có trên mạng)

2 tháng 10 2020

bạn ơi cho mình hỏi là vì sao 1995 chia 6 dư 3 thì 1995^1995 chia 6 cũng dư 3 vậy ạ? nếu đc thì bạn có thể chứng minh giúp mình t/c này với ạ

16 tháng 3 2015

1 a) Bạn nhẩm nghiệm ra a = 1 thỏa mãn pt

Phân tích như sau : a^3 - a^2 + 3a^2 - 3a - 10a + 10 = (a-1)(a^2 + 3a - 10) = (a-1)(a+5)(a-2)

16 tháng 3 2015

1 b) Dùng hằng đẳng thức a^2 - b^2 = (a-b)(a+b). Chứng minh ư ? Phá ngoặc ra đúng ngay :)

=(a^2 + 4b^2 - 5)^2 - (4ab+4)^2    (đưa 16 vào trong bình phương đó)

=(a^2 + 4b^2 - 4ab - 4 - 5)(a^2 + 4b^2 + 4ab +4 - 5)

Dùng tiếp hằng đẳng thức (a+b)^2 = a^2 + b^2 +2ab

=[(a-2b)^2 - 9] [(a+2b)^2 - 1]

Dùng 1 lần nửa hằng đẳng thức đầu tiên

=(a-2b-3)(a-2b+3)(a+2b-1)(a+2b+1)