K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2019

<=> \(\frac{b+c-a}{2a}+1+\frac{a-b+c}{2b}+1+\frac{a+b-c}{2c}+1\ge\frac{3}{2}+3\)

<=> \(\frac{a+b+c}{2c}+\frac{a+b+c}{2b}+\frac{a+b+c}{2c}\ge\frac{9}{2}\)

<=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

<=> \(\frac{a}{a}+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{b}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+\frac{c}{c}\ge9\)

<=> \(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge6\)

Ap dung bdt  \(\frac{a}{b}+\frac{b}{a}\ge2\)

Suy ra ve trai >= 2.3=6=ve phai

=> DPCM

Dau = xay ra <=> a=b=c

mik phai di hoc nen tra loi tat mong ban thong cam

16 tháng 9 2019

cảm ơn nhiều ạ

8 tháng 4 2017

a2b+ab2-2abc +b2c+bc2-2abc+ac2+a2c-2abc

=b(a2-2ac+c2) +a(b2-2bc+c2)+c (a2-2ab+b2)

= b(a-c)2+a(b-c)2+c(a-b)2 vì a,b,c là độ dài ba cạnh tam giác=) a,b,c>0

b(a-c)2\(\ge0\) \(\forall a,b,c\)

a(b-c)2\(\ge0\)\(\forall a,b,c\)

c(a-b)2\(\ge0\forall a,b,c\)

26 tháng 7 2019

\(\frac{\left(2-c\right)\left(b-c\right)}{2a+bc}=\frac{\left(a+b\right)\left(b-c\right)}{a\left(a+b+c\right)+bc}=\frac{\left(a+b\right)\left(b-c\right)}{\left(a+b\right)\left(c+a\right)}=\frac{b-c}{c+a}=\frac{b}{c+a}-\frac{c}{c+a}\)

Tương tự, ta có: \(\frac{\left(2-a\right)\left(c-a\right)}{2b+ca}=\frac{c}{a+b}-\frac{a}{a+b};\frac{\left(2-b\right)\left(a-b\right)}{2c+ab}=\frac{a}{b+c}-\frac{b}{b+c}\)

\(\Rightarrow\)\(VT=\left(\frac{a}{b+c}-\frac{a}{a+b}\right)+\left(\frac{b}{c+a}-\frac{b}{b+c}\right)+\left(\frac{c}{a+b}-\frac{c}{c+a}\right)\)

\(=\frac{a\left(a-c\right)}{\left(a+b\right)\left(b+c\right)}+\frac{b\left(b-a\right)}{\left(b+c\right)\left(c+a\right)}+\frac{c\left(c-b\right)}{\left(c+a\right)\left(a+b\right)}\)

\(=\frac{a\left(a-c\right)\left(c+a\right)+b\left(b-a\right)\left(a+b\right)+c\left(c-b\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(=\frac{\left(a^3+b^3+c^3\right)-\left(a^2b+b^2c+c^2a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{\left(a^3+b^3+c^3\right)-\left(a^3+b^3+c^3\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{2}{3}\)

cái bđt \(a^3+b^3+c^3\ge a^2b+b^2c+c^2a\) cô Chi có làm r ib mk gửi link 

8 tháng 5 2017

ta có \(a^2+2b^2+3=a^2+b^2+b^2+1+2.\)

áp dụng BĐT cauchy

=>\(a^2+2b^2+3>=2ab+2b+2=2\left(ab+b+1\right)\)

=>\(\frac{1}{a^2+2b^2+3}< =\frac{1}{2\left(ab+b+1\right)}\)

tương tự ta có \(\hept{\frac{1}{b^2+2c^2+3}< =\frac{1}{2\left(bc+c+1\right)}}\),\(\frac{1}{c^2+2a^2+3}< =\frac{1}{2\left(ac+a+1\right)}\)

=>VT<=\(\frac{1}{2}.\left(\frac{1}{ab+b+1}+\frac{1}{ac+a+1}+\frac{1}{bc+c+1}\right)\)

<=>VT<=\(\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{abc}{ac+a^2bc+abc}+\frac{abc}{bc+c+abc}\right)\)(do abc=1)

<=>VT<=\(\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{b}{ab+b+1}+\frac{ab}{ab+b+1}\right)\)=\(\frac{1}{2}\left(\frac{ab+b+1}{ab+b+1}\right)=\frac{1}{2}\)(đpcm)

Dấu bằng xảy ra khi a=b=c=1

8 tháng 5 2017

1/(a^2+2b^2+3)+1/(b^2+2c^2+3)+1/(c^2+2a^2+3)

Tại có: abc=1 =>a=1;b=1;c=1.

Syu ra: 1/(1+2.1+3)+1/(1+2.1+3)+1/(1+2.1+3)

=1/6+1/6+1/6=1/2

=>1/(a^2+2b^2+3)+1/(b^2+2c^2+3)+1/(c^2+2a^2+3) \(\le\)1/2

=> đpcm

NV
7 tháng 2 2022

\(VT=\dfrac{a^2}{b+ab^2c}+\dfrac{b^2}{b+abc^2}+\dfrac{c^2}{c+a^2bc}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+abc\left(a+b+c\right)}=\dfrac{9}{3+3abc}\)

\(VT\ge\dfrac{9}{3+\dfrac{\left(a+b+c\right)^3}{9}}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

8 tháng 2 2022

cảm ơn thầy ạ

NV
20 tháng 4 2019

\(\left\{{}\begin{matrix}c^2-2ca+a^2+2ab-2bc=a^2\\c^2-2bc+b^2+2ab-2ac=b^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(a-c\right)^2+2b\left(a-c\right)=a^2\\\left(b-c\right)^2+2a\left(b-c\right)=b^2\end{matrix}\right.\)

\(\Rightarrow\frac{a^2+a^2-2ac+c^2}{b^2+b^2-2bc+c^2}=\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{\left(a-c\right)^2+2b\left(a-c\right)+\left(a-c\right)^2}{\left(b-c\right)^2+2a\left(b-c\right)+\left(b-c\right)^2}\)

\(=\frac{2\left(a-c\right)^2+2b\left(a-c\right)}{2\left(b-c\right)^2+2a\left(b-c\right)}=\frac{\left(a-c\right)\left(a-c+b\right)}{\left(b-c\right)\left(b-c+a\right)}=\frac{a-c}{b-c}\)

AH
Akai Haruma
Giáo viên
15 tháng 5 2018

Lời giải:

Áp dụng BĐT Cauchy:

\(\frac{a^3}{bc}+b+c\geq 3\sqrt[3]{a^3}=3a\)

\(\frac{b^3}{ca}+c+a\geq 3\sqrt[3]{b^3}=3b\)

\(\frac{c^3}{ab}+a+b\geq 3\sqrt[3]{c^3}=3c\)

Cộng theo vế thu được:

\(\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}+2(a+b+c)\geq 3(a+b+c)\)

\(\Rightarrow \frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\geq a+b+c\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c\)

15 tháng 5 2018

Akai Haruma cảm ơn thầy /cô

18 tháng 2 2017

Áp dụng bđt Cauchy-Schwarz dạng Engel ta có:

a3/b+2c + b3/c+2a + c3/a+2b = a4/ab+2ac + b4/bc+2ab + c4/ac+2bc\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{3\left(ab+bc+ca\right)}=\frac{1}{3\left(ab+bc+ca\right)}\)\(\ge\frac{1}{3\left(a^2+b^2+c^2\right)}=\frac{1}{3}\left(ĐPCM\right)\)