K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2016

Bạn đã học đồng dư chưa ?

Nếu rồi thì có thể tham khảo cách này :

Ta có :

\(331\text{≡}1\) ( mod 3 )

\(\Rightarrow331^{332}\text{≡}1^{332}\)( mod 3 )

\(\Rightarrow331^{332}\text{≡}1\)( mod 3 )

\(332\text{≡}2\)( mod 3 )

\(\Rightarrow332^2\text{≡}2^2\)( mod 3 )

\(\Rightarrow332^2\text{≡}4\text{≡}1\)( mod 3 )

\(\Rightarrow\left(332^2\right)^{166}\text{≡}1^{166}\)( mod 3 )

\(\Rightarrow332^{332}\text{≡}1\)( mod 3 )

\(\Rightarrow332^{333}\text{≡}1.332\text{≡}332\text{≡}2\) ( mod 3 )

\(333\text{≡}0\) ( mod 3 )

\(\Rightarrow333^{334}\text{≡}0\) ( mod 3 )

\(\Rightarrow A=331^{332}+332^{333}+333^{334}\text{≡}1+2+0\text{≡}3\text{≡}0\)( mod 3 )

Vì vậy A chia 3 dư 0 ; hay A chia hết cho 3.

Lại có :

\(A=331^{332}+332^{333}+333^{334}\)

\(=\left(...1\right)^{332}+332^{4.83}.332+333^{4.83}.333^2\)

\(=\left(...1\right)+\left(...6\right)\left(...1\right)+\left(...1\right).\left(...9\right)\)

\(=\left(...1\right)+\left(..6\right)+\left(...9\right)\)

\(=\left(...6\right)\)

A có tận cùng 6 nên A chia 5 dư 1.

2 tháng 7 2016

Ta có: (a−b)+(a+b)=2a là một số chẵn

=> (a−b); (a+b)cùng chẵn hoặc cùng lẻ (do tổng của chúng là một số chẵn)

Mà tích của chúng = 2010 là một số chẵn nên 2 số cùng chẵn

⇒(a−b)(a+b) chia hết cho 4.

Mà 2010 không chia hết cho 4

=> Không tìm được các cặp số nguyên a, b thỏa mãn đề bài.

19 tháng 12 2018

bài này có trong đề thi cuối học kì 1 ko ???????

21 tháng 12 2018

a) Tìm được dư là 4227

b) Nhận xét: Số mũ của các số hạng có dạng 4k + 1 (k ∈ N)

Chữ số tận cùng của A là chữ số tận cùng của tổng 1 + 2 + 3 + … + 505

Vậy A có tận cùng là 5.

8 tháng 12 2018

a) Ta có:

a=17x+11=23y+18=11z+3 (x,y,z E N)

=> a+74=17x+85=23y+92=11z+77

=> a+74 chia hết cho 17;23;11

Vì 3 số trên ntcn nên: a+74 chia hết cho 17.23.11=4301

Đặt: a+74=4301k (k E N*)

=> a=4301(k-1)+4227

nên: số dư của a khi chia cho 4301 là: 4227

b) 11+25+39+413+..........+505201

Ta dễ thấy rằng: 1;5;9;...vv là các số có dạng: 4k+1 (k E N)

=> 11+25+39+............+505201=(...1)+(...2)+(....3)+(...4)+........+(...4)+(...5)

Tổng tận cùng của 10 stn liên tiếp là:

1+2+3+4+5+6+7+8+9+0=45 có tc=5

Ta có 50 cặp nv nên sẽ có tc=0

5 số cuối là: (...1);(...2);(...3);(..4);(...5)

tc=1+2+3+4+5=15 có tc=5

Vậy tổng trên có tc=0+5=5

A có tc=5

9 tháng 12 2018

thank you nha

4 tháng 8 2016

1)

\(222^{333}\)   và  \(333^{222}\)

\(222^{333}=\left(222^3\right)^{111}=10941048^{111}\)

\(333^{222}=\left(333^2\right)^{111}=110889^{111}\)

 vì \(10941048^{111}>110889^{111}\Rightarrow222^{333}>333^2\)

4 tháng 8 2016

 2)

\(1x8y2⋮36\Rightarrow1x8y2⋮4;1x8y2⋮9\)

\(1x8y2⋮4\Leftrightarrow y2⋮\Leftrightarrow y=\left\{1;5;9\right\}\)

-nếu\(y=1\Rightarrow1x812⋮9\Leftrightarrow\left(1+x+8+1+2\right)⋮9\Leftrightarrow12+x⋮9\Leftrightarrow x=6\)nếu \(y=5\Rightarrow1x852⋮9\Leftrightarrow\left(1+x+8+5+2\right)⋮9\Leftrightarrow16+x⋮9\Leftrightarrow x=2\)nếu \(y=9\Rightarrow1x892⋮9\Leftrightarrow\left(1+x+8+9+2\right)⋮9\Leftrightarrow20+x⋮9\Leftrightarrow x=7\)