Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) đk: \(x\ge0;x\ne1\)
b) \(A=\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right)\div\frac{\sqrt{x}-1}{2}\)
\(A=\frac{x+2+\left(\sqrt{x}-1\right)\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\div\frac{\sqrt{x}-1}{2}\)
\(A=\frac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\frac{2}{\sqrt{x}-1}\)
\(A=\frac{2\left(x-2\sqrt{x}+1\right)}{\left(x-2\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}\)
\(A=\frac{2}{x+\sqrt{x}+1}\)
c) Ta có: \(x+\sqrt{x}+1=\left(x+\sqrt{x}+\frac{1}{4}\right)+\frac{3}{4}=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
=> \(\frac{2}{x+\sqrt{x}+1}>0\left(\forall x\ne1\right)\)
d) Ta chỉ có thể tìm GTLN thôi
Để A đạt GTLN => \(x+\sqrt{x}+1\) phải đạt GTNN
Dấu "=" xảy ra khi: \(x=0\)
Vậy Max(A) = 2 khi x = 0
#)Giải :
a) \(A=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x\sqrt{x}}{\sqrt{x}-1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
\(=\frac{x-1}{2\sqrt{x}}\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)^2-\sqrt{x}\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{x-1}{2\sqrt{x}}.\frac{x\sqrt{x}-2x+\sqrt{x}-x\sqrt{x}-2x-\sqrt{x}}{x-1}\)
\(=\frac{-4}{2\sqrt{x}}=-2\sqrt{x}\)
ĐKXĐ tất cả các câu bạn tự tìm
\(C=\frac{4\left(\sqrt{x}+3\right)+3}{\sqrt{x}+3}=4+\frac{3}{\sqrt{x}+3}\le4+\frac{3}{3}=5\)
\(C_{max}=5\) khi \(x=0\)
\(A=\frac{2\left(\sqrt{x}+2\right)-17}{\sqrt{x}+2}=2-\frac{17}{\sqrt{x}+2}\ge2-\frac{17}{2}=-\frac{13}{2}\)
\(A_{min}=-\frac{13}{2}\) khi \(x=0\)
\(B=\frac{x+2\sqrt{x}+1+9}{\sqrt{x}+1}=\frac{\left(\sqrt{x}+1\right)^2+9}{\sqrt{x}+1}=\sqrt{x}+1+\frac{9}{\sqrt{x}+1}\)
\(B\ge2\sqrt{\frac{9\left(\sqrt{x}+1\right)}{\sqrt{x}+1}}=6\Rightarrow B_{min}=6\) khi \(\sqrt{x}+1=3\Leftrightarrow x=4\)
\(A=\frac{2\left(\sqrt{x}+2\right)+1}{\sqrt{x}+2}=2+\frac{1}{\sqrt{x}+2}\)
Để A nguyên \(\Rightarrow\sqrt{x}+2=Ư\left(1\right)=\left\{-1;1\right\}\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+2=-1\\\sqrt{x}+2=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=-3\left(l\right)\\\sqrt{x}=-1\left(l\right)\end{matrix}\right.\) \(\Rightarrow\) không tồn tại x nguyên để A nguyên
\(A=\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}+1-3}{\sqrt{x}+1}=1-\frac{3}{\sqrt{x}+1}< 1\)
Mặt khác \(A+2=\frac{\sqrt{x}-2}{\sqrt{x}+1}+2=\frac{\sqrt{x}-2+2\sqrt{x}+2}{\sqrt{x}+1}=\frac{3\sqrt{x}}{\sqrt{x}+1}\ge0\)
\(\Rightarrow A\ge-2\Rightarrow-2\le A< 1\)
Mà A nguyên \(\Rightarrow A=\left\{-2;-1;0\right\}\)
- Với \(A=-2\Rightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}=-2\Rightarrow\sqrt{x}-2=-2\sqrt{x}-2\)
\(\Rightarrow3\sqrt{x}=0\Rightarrow x=0\)
- Với \(A=-1\Rightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}=-1\Rightarrow\sqrt{x}-2=-\sqrt{x}-1\)
\(\Rightarrow2\sqrt{x}=1\Rightarrow\sqrt{x}=\frac{1}{2}\Rightarrow x=\frac{1}{4}\)
- Với \(A=0\Rightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}=0\Rightarrow\sqrt{x}-2=0\Rightarrow x=4\)
Vậy \(x=\left\{0;\frac{1}{4};4\right\}\)
a/A\(=\frac{x+2}{x-\sqrt{x}-2}-\frac{2\sqrt{x}}{\sqrt{x}+1}-\frac{1-\sqrt{x}}{\sqrt{x}-2}\)
\(=\frac{x+2-2\sqrt{x}\left(\sqrt{x}-2\right)-\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+2-2x+4\sqrt{x}-1+x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{4\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
Thay x=16 vào A ta có: A\(=\frac{3}{2}\)
b/ B= \(1-\frac{\sqrt{x}-3}{\sqrt{x}-2}\)
\(\frac{\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-2}=\frac{1}{\sqrt{x}-2}\)
=>C=\(\frac{4\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}:\frac{1}{\sqrt{x}-2}\)=\(\frac{4\sqrt{x}-1}{\sqrt{x}+1}\)
c/Để C thuộc Z thì \(\frac{4\sqrt{x}-1}{\sqrt{x}+1}\) thuộc Z
C\(=\text{}\frac{4\sqrt{x}-1}{\sqrt{x}+1}=\frac{4\sqrt{x}+4}{\sqrt{x}+1}-\frac{5}{\sqrt{x}+1}=4-\frac{5}{\sqrt{x}+1}\)
=> \(5⋮\left(\sqrt{x}+1\right) \Leftrightarrow\sqrt{x}+1\in\left\{-5;-1;1;5\right\}\)
Nhận xét: \(\sqrt{x}+1\ge1\)
\(\Rightarrow\sqrt{x}+1\in\left\{1;5\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;4\right\} \Leftrightarrow x\in\left\{0;16\right\}\)
Vậy \(x\in\left\{0;16\right\}\) thì C thuộc Z
Chúc bạn học tốt!
cảm ơn bạn nhiều <3