\(CMR:\overline{abcdeg}⋮7\Leftrightarrow\overline{abc}+\overline{deg}⋮7\)

b,

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2018

a) Giả sử abcdeg chia hết cho 37                     —> 999abc+(abc+deg) chia hết cho 37

—> 999abc chia hết cho 37  vì 999 :37 ko dư                                                     —>abc + deg  chia hết cho 37

20 tháng 1 2019

a) Vì\(\overline{abc}-\overline{deg}⋮13\Rightarrow\overline{abc}-\overline{deg}=13.k\Rightarrow\overline{abc}=\overline{deg}+13.k\left(k\in N\right)\)

Do vậy : \(\overline{abcdeg}=1000.\overline{abc}+\overline{deg}=1000.\left(\overline{deg}+13.k\right)+\overline{deg}=\left(1001.\overline{deg}+100.13.k\right)⋮13\)

b) \(\overline{abc}=100.a+10.b+c=98.a+7.b+\left(2a+3b+c\right)\)

Vậy nếu \(\overline{abc⋮7}\) thì (2a + 3b + c ) chia hết cho 7

20 tháng 1 2019

Mất 20 phút để làm cái bài này , đánh máy mỏi tay quá gianroi

17 tháng 8 2017

giúp em với @Nguyễn Thanh Hằng @Hồng Phúc Nguyễn

18 tháng 3 2017

a, Ta có:\(\overline{abcdeg}\)=\(\overline{ab}.10000+\overline{cd}.100+\overline{eg}\)

\(=\overline{ab}.9999+\overline{ab}+\overline{cd}.99+\overline{cd}+\overline{eg}\)

\(=\left(\overline{ab}.9999+\overline{cd}.99\right)+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)

Ta thấy \(\left(\overline{ab}.9999+\overline{cd}.99\right)⋮11\)

\(\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)

Vậy \(\overline{abcdeg}⋮11\)

30 tháng 3 2017

b, Ta có: 72=8.9

\(\Rightarrow10^{28}+8⋮8;9\)

Ta thấy: \(10^{28}\)gồm 1 chữ số 1 và 28 chữ số 0 đứng sau nó

\(\Rightarrow10^{28}+8\) gồm 1 chữ số 1, 27 chữ số 0 đứng sau và chữ số 8 ở tận cùng.

\(\Rightarrow10^{28}+8\) có tổng các chữ số là 9

\(\Rightarrow10^{28}+8⋮9\) (1)

Ta xét đến 3 chữ số tận cùng của \(10^{28}+8\)​là 0, 0, 8 và tổng của 3 chữ số đó là 8.

Mà 8\(⋮\)8 nên \(10^{28}+8⋮8\) (2)

Từ (1) và (2) suy ra \(10^{28}+8⋮72\)

17 tháng 9 2017

Câu 1 :

b) [( 3x + 1 )3] = 150 => ( 3x + 1 )3 = 1 => 3x + 1 = 1 => 3x = 0 => x = 0

21 tháng 6 2019

Câu 2: Theo đề bài thì \(a\equiv b\left(mod7\right)\Rightarrow a-b\equiv0\left(mod7\right)\)

Hay a - b chia hết cho 7 (đpcm)

Nếu cách trên sai thì lấy cách sau chữa liền,thầy khỏi la:v

Do a chia hết cho 7,đặt a = 7k. Do b chia hết cho 7, đặt b = 7h

Khi đó \(a-b=7\left(k-h\right)⋮7\) (đpcm)

Hai cách cùng sai thì mình chịu. (chắc ko có cái này đâu:v)

23 tháng 7 2017

ai giúp mk mk tc cho 3 cái

24 tháng 9 2017

C: Dấu hiệu chia hết cho 11 : 

1 số chia hết cho 11 và chỉ khi tổng các số hàng chẵn / lẻ chia hết cho 11

Theo giả thiết /ab + /cd + /eg = 10a + b + 10c + d + 10e + g = 11. ( a + c + e ) + ( b +d + g ) - ( a + c + e ) chia hết cho 11

Suy ra : ( b + d + g ) - ( a + c + e ) chia hết cho 11 

Suy ra abcdeg chia hết cho 11 

C2 : Ta có

abcdeg = ab . 10000 = cd . 100 + eg

=  ( 9999ab )  +  ( 99cd )+ ( ab + cd + eg ) 

Vì 9999ab + 99cd chia hết cho 11 và ab + cd + eg chia hết cho 11

 Suy ra : abcdeg chia hết cho 11

( cách nào cũng đúng nha ) 

18 tháng 3 2017

a)\(ab+cd+eg⋮11\Rightarrow ab+999999\cdot ab+cd\cdot9999\cdot cd+eg+9999\cdot eg⋮11\)

\(\Rightarrow abcdeg⋮11\left(đpcm\right)\)

b) 10 chia 9 dư 1 nên 1028 chia 9 dư 1 => 1028 + 8 chia hết cho 9 

1028 có tận cùng là 28 chữ số 0, chia hết cho 8 => 1028 + 8 chia hết cho 8 

mà (8; 9) = 1 => 1028 + 8 chia hết cho 72 (đpcm)

18 tháng 3 2017

bạn nga nguyễn ơi, mik vẫn ko hiểu cách giải của bạn, hình như có gì đó sai sai hay sao ý

7 tháng 1 2018

abcdeg phải chia hết cho 13 chứ bn