K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

bạn viết có thánh đọc ra á :v

8 tháng 8 2017

Bạn viết như vậy vẫn nhìn đc nhưng nhìn hơi khó

NV
15 tháng 11 2018

Đây là câu a/

https://hoc24.vn/hoi-dap/question/693692.html?pos=1903228

Còn câu b thì như sau:

Trước hết, nghi ngờ bạn ghi sai đề ở con này \(\dfrac{1}{a^2+7a+9}\) , số 9 phải là số 12 mới hợp lý. Mình tự sửa lại đề, còn nếu đề đúng như bạn chép thì bạn giữ nguyên nó, phần còn lại rút gọn được còn đâu thì quy đồng giải trâu thôi, chẳng cách nào với đề xấu kiểu ấy cả.

\(B=\dfrac{1}{a\left(a+1\right)}+\dfrac{1}{\left(a+1\right)\left(a+2\right)}+\dfrac{1}{\left(a+2\right)\left(a+3\right)}+\dfrac{1}{\left(a+3\right)\left(a+4\right)}+\dfrac{1}{\left(a+4\right)\left(a+5\right)}\)

\(B=\dfrac{1}{a}-\dfrac{1}{a+1}+\dfrac{1}{a+1}-\dfrac{1}{a+2}+\dfrac{1}{a+2}-\dfrac{1}{a+3}+\dfrac{1}{a+3}-\dfrac{1}{a+4}+\dfrac{1}{a+4}-\dfrac{1}{a+5}\)

\(B=\dfrac{1}{a}-\dfrac{1}{a+5}=\dfrac{5}{a\left(a+5\right)}\)

15 tháng 11 2018

đúng là mk ghi sai đề thật

a) \(A=\frac{1}{a^2+a}+\frac{1}{a^2+3a+2}+\frac{1}{a^2+5a+6}+\frac{1}{a^2+7a+12}+\frac{1}{a^2+9a+20}\)

\(A=\frac{1}{a\left(a+1\right)}+\frac{1}{\left(a+1\right)\left(a+2\right)}+\frac{1}{\left(a+2\right)\left(a+3\right)}+\frac{1}{\left(a+3\right)\left(a+4\right)}+\frac{1}{\left(a+4\right)\left(a+5\right)}\)

\(A=\frac{1}{a}-\frac{1}{a+1}+\frac{1}{a+1}-\frac{1}{a+2}+\frac{1}{a+2}-\frac{1}{a+3}+\frac{1}{a+3}-\frac{1}{a+4}+\frac{1}{a+4}-\frac{1}{a+5}\)

\(A=\frac{1}{a}-\frac{1}{a+5}=\frac{a+5-a}{a\left(a+5\right)}=\frac{5}{a^2+5a}\)

b) Điều kiện: \(a\ne0;-1;-2;-3;-4;-5\)

\(A>\frac{5}{6}\) \(\Leftrightarrow\frac{5}{a^2+5a}>\frac{5}{6}\) \(\Leftrightarrow\frac{5}{a^2+5a}-\frac{5}{6}>0\) \(\Leftrightarrow\frac{30-5a^2-25a}{30\left(a^2+5a\right)}>0\)

\(\Leftrightarrow\left[{}\begin{matrix}-6< a< -5\\0< a< 1\end{matrix}\right.\)

Kết luận: ....

NV
1 tháng 7 2020

ĐKXĐ: ...

a/ \(A=\frac{1}{a\left(a+1\right)}+\frac{1}{\left(a+1\right)\left(a+2\right)}+\frac{1}{\left(a+2\right)\left(a+3\right)}+\frac{1}{\left(a+3\right)\left(a+4\right)}+\frac{1}{\left(a+4\right)\left(a+5\right)}\)

\(=\frac{1}{a}-\frac{1}{a+1}+\frac{1}{a+1}-\frac{1}{a+2}+...+\frac{1}{a+4}-\frac{1}{a+5}\)

\(=\frac{1}{a}-\frac{1}{a+5}=\frac{5}{a\left(a+5\right)}\)

\(A>\frac{5}{6}\Rightarrow\frac{5}{a\left(a+5\right)}>\frac{5}{6}\)

\(\Leftrightarrow\frac{1}{a\left(a+5\right)}-\frac{1}{6}>0\Leftrightarrow\frac{6-a^2-5a}{a\left(a+5\right)}>0\)

\(\Leftrightarrow\frac{\left(1-a\right)\left(a+6\right)}{a\left(a+5\right)}>0\Rightarrow\left[{}\begin{matrix}-6< a< -5\\0< a< 1\end{matrix}\right.\)

19 tháng 3 2019

ban nao biet lam , lam minh coi voi

Bài 1: 

8: \(=\dfrac{x+3}{x\left(x-3\right)}\)

9: \(=\dfrac{x-2}{x-5}\cdot\dfrac{\left(x-5\right)\left(x+5\right)}{\left(x-2\right)^2}=\dfrac{x+5}{x-2}\)

10: \(=1:\dfrac{a-1}{a}=\dfrac{a}{a-1}\)

12: \(=\dfrac{6\left(x+1\right)}{3x\left(x+1\right)}=\dfrac{2}{x}\)

13: \(\dfrac{3}{x+3}-\dfrac{x-6}{x\left(x+3\right)}\)

\(=\dfrac{3x-x+6}{x\left(x+3\right)}=\dfrac{2x+6}{x\left(x+3\right)}=\dfrac{2}{x}\)

4 tháng 8 2020

a) 3(2a - 1) + 5(3 - a)

= 6a - 3 + 15 -5a

= a + 12

Thay a=\(-\frac{3}{2}\) vào biểu thức a) ta có:

\(-\frac{3}{2}+12=\frac{21}{2}\)

b) 25x - 4(3x - 1) + 7(5 - 2x)

= 25x -12x + 4 + 35 - 14x

= -x + 39

Thay x= 2,1 vào biểu thức b) ta có:

⇒ -2,1 + 39 = 36,9

c) 4a - 2(10a - 1) + 8a - 2

= 4a -20a + 2 + 8a - 2

= -8a

Thay a= -0,2 vào biểu thức c) ta có:

⇒ -8.(-0,2)= 1,6

d) 12(2 - 3b) + 35b - 9(b + 1)

= 24 - 36b + 35b - 9b -9

= 15 - 10b

Thay b=\(\frac{1}{2}\) vào biểu thức d) ta có:

⇒ 15 - 10. \(\frac{1}{2}=\) 10

4 tháng 8 2020

aa, cảm ơn nhé ^^