Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn phải tách từng câu ra. chứ kiểu này k ai trả lời cho đâu
2)
a)x2-y2=(x+y).(x-y)=(87+13).(87-13)=100.74=7400
b)x3-3x2+3x-1=(x-1)3=(101-1)3=1003=1000000
c)x3+9x2+27x+27=(x+3)3=(97+3)3=1003=1000000
4)
a)x2-6x+10=x2-6x+9+1=(x-3)2+1>=1>0 voi moi x
b)4x-x2-5= -(x2-4x+5)= -(x2-4x+4+1)= -(x-2)2 - 1<0 voi moi x
* Dạng toán về phép chia đa thức
Bài 9. Làm phép chia:
a. \(3x^3y^2:x^2=3xy^2\)
b.\(\left(x^5+4x^3-6x^2\right):4x^2=\dfrac{1}{4}x^3+x-\dfrac{3}{2}\)
c. \(\left(x^3-8\right):\left(x^2+2x+4\right)=\left(x-2\right)\left(x^2+2x+4\right):\left(x^2+2x+4\right)=x-2\)
d. \(\left(3x^2-6x\right):\left(2-x\right)=-3x\left(2-x\right):\left(2-x\right)=-3x^2\)
e. \(\left(x^3+2x^2-2x-1\right):\left(x^2+3x+1\right)\)
\(=\left[\left(x^3-1\right)+\left(2x^2-2x\right)\right]:\left(x^2+3x+1\right)\)
\(=\left[\left(x-1\right)\left(x^2+x+1\right)+2x\left(x-1\right)\right]:\left(x^2+3x+1\right)\)
\(=\left(x-1\right)\left(x^2+x+1+2x\right):\left(x^2+3x+1\right)\)
\(=\left(x-1\right)\left(x^2+3x+1\right):\left(x^2+3x+1\right)\)
\(=x-1\)
Bài 10: Làm tính chia
( Bài này có thể đặt phép chia hoặc phân tích thành nhân tử của Số bị chia sao cho có một nhân tử chia hết cho số chia)
C1 : Đặt phép tính chia
C2 : Đặt nhân tử chung ,tùy vào từng câu
1. \(\left(x^3+3x^2+x-3\right):\left(x-3\right)\)
\(=\left[x^2\left(x-3\right)+\left(x-3\right)\right]:\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+1\right):\left(x-3\right)\)
\(=x^2+1\)
2.( \(2x^4-5x^2+x^3-3-3x\) ) : \(x^2-3\)
\(=\left(2x^4+x^3-5x^2-3x-3\right):\left(x^2-3\right)\)
2x^4 + x^3 - 5x^2 - 3x - 3 x^2 - 3 2x^2 + x + 1 2x^4 -6x^2 x^3+ x^2 - 3x- 3 x^3 - 3x x^2 -3 x^2 - 3 0
3. (x – y – z)5 : (x – y – z)3
\(=\left(x-y-z\right)^{5-3}\)
\(=\left(x-y-z\right)^2\)
\(=x^2+y^2+z^2-2xy-2xz+2yz\)
4. \(\left(x^2+2x+x^2-4\right):\left(x+2\right)\)
\(=\left[x\left(x+2\right)+\left(x-2\right)\left(x+2\right)\right]:\left(x+2\right)\)
\(=\left(x+2\right)\left(x+x-2\right):\left(x+2\right)\)
\(=2x-2\)
5.( \(2x^3+5x^2-2x+3\) ) : \(\left(2x^2-x+1\right)\)
2x^3 + 5x^2 - 2x + 3 2x^2 - x + 1 x + 3 2x^3 - x^2 + x - 6x^2 - 3x + 3 6x^2 - 3x + 3 - 0
\(6.\left(2x^3-5x^2+6x-15\right):\left(2x-5\right)\)
2x^3 - 5x^2 + 6x - 15 2x - 5 x^2 + 3 2x^3 - 5x^2 - 6x - 15 6x - 15 - 0
P/S : Tối mk lm tiếp nha bn , bh mk có việc bận
Bài 11.
1. Do đa thức chia có bậc là 4 , đa thức bị chia có bậc 2 nên thương có bậc 2
Đặt : x4 - x3 + 6x2 - x + n = ( x2 - x + 5)( x2 + ax + b)
x4 - x3 + 6x2 - x + n= x4 + ax3 + bx2 - x3 - ax2 - bx + 5x2 + 5ax+5b
x4 - x3 + 6x2 - x + n= x4 - x3( a + 1) + x2( b - a + 5) - x( b - 5a) + 5b
Đồng nhất hệ số , ta có :
* a + 1 = 1 => a = 0
* b - a + 5 = 6 => b = 6 - 5 + a = 1
* b - 5a = 1
* 5b = n => n = 5.1 = 5
Vậy , để............thì n = 5
2. Bài này không phức tạp nên chia bt nha , nhưng mk làm cách đồng nhất nhé ( máy tính nhà mk giống bạn Giang bị lỗi phần chia)
Do : đa thức chia bậc 3 , đa thức bị chia bậc 1 nên đa thức thương có bậc 2
Đặt : 3x3 + 10x2 - 5 + n = ( 3x + 1)( x2 + ax + b)
3x3 + 10x2 - 5 + n = 3x3 + 3ax2 + 3bx + x2 + ax + b
3x3 + 10x2 - 5 + n = 3x3 + x2( 3a + 1) + x( 3b + a) + b
Đồng nhất hệ số , ta có :
* 3a + 1 = 10 => 3a = 9 => a = 3
* 3b + a = 0 => 3b = -3 => b = -1
* b = n - 5 => n = b + 5 = -1 + 5 = 4
Vậy, để........thì : n = 4
3. 2n^2+n-7 n-2 2n - 2n^2-4n 5n-7 +5 - 5n-10 3
Để,.......thì :
n - 2 thuộc Ư( 3)
Lập bảng giá trị , ta có :
n-2 n 1 3 -1 -3 3 5 1 -1
Vậy,....
Bài 1:
b:
x=9 nên x+1=10
\(M=x^{10}-x^9\left(x+1\right)+x^8\left(x+1\right)-x^7\left(x+1\right)+...-x\left(x+1\right)+x+1\)
\(=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...-x^2-x+x+1\)
=1
c: \(N=\left(1+2+2^2+2^3+2^4\right)+2^5\left(1+2+2^2+2^3+2^4\right)+2^{10}\left(1+2+2^2+2^3+2^4\right)\)
\(=31\left(1+2^5+2^{10}\right)⋮31\)
b)Ta có:\(B=\left(0,5x^2+x\right)^2-3\left|0,5x^2+x\right|\)
\(B=\left|0,5x^2+x\right|^2-3\left|0,5x^2+x\right|+\dfrac{9}{4}-\dfrac{9}{4}\)
\(B=\left(\left|0,5x^2+x\right|-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)
"="<=>\(\left|0,5x^2+x\right|=\dfrac{3}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
g)Ta có:\(G=\left(x^2+x-6\right)\left(x^2+x+2\right)\)
Đặt \(x^2+x-2=t\)
\(\Rightarrow G=\left(t-4\right)\left(t+4\right)\)
\(G=t^2-16\ge-16\)
"="<=>\(x^2+x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
E=\(x^4-6x^3+9x^2+x^2-6x+9\)
\(=x^2\left(x^2-6x+9\right)+x^2-6x+9\\ =x^2\left(x-3\right)^2+\left(x-3\right)^2\ge0\forall x\\ E_{min}=0\Leftrightarrow x=3\)
a) Cho x2 - x + 5=0 =>x={ \(\frac{1}{2}+\frac{\sqrt{19}}{2}i;\frac{1}{2}-\frac{\sqrt{19}}{2}i\) }
Thay giá trị của x là \(\frac{1}{2}+\frac{\sqrt{19}}{2}i\)hoặc \(\frac{1}{2}-\frac{\sqrt{19}}{2}i\) vừa tìm được vào x4 - x3 + 6x2- x sẽ luôn được kết quả là -5
=>-5 +a=0 => a=5
b) Cho x+2=0 => x=-2
Thay giá trị của x vào biểu thức 2x3 - 3x2 + x sẽ được kết quả là -30
=> -30 + a=0 => a=30
a) Cho 3n +1 =0 => n= \(\frac{-1}{3}\)
Thay n= \(\frac{-1}{3}\)vào biểu thức 3n3 + 10n2 -5 sẽ được kết quả -4
Vậy n = -4
b) Cho n-1=0 => n=1
Thay n=1 vào biểu thức 10n2 + n -10 sẽ được kết quả là 1
Vậy n = 1
Bài 3:
a: \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
=-5n chia hết cho 5
b: \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)
\(=n^2+4n-n-4-\left(n^2+n-4n-4\right)\)
\(=n^2+3n-4-\left(n^2-3n-4\right)\)
\(=6n⋮6\)
Ta có : P = x4 + x2 - 6x + 9 = x4 + (x2 - 6x + 9) = x4 + (x - 3)2
Mà : x4 \(\ge0\forall x\in R\)
(x - 3)2 \(\ge0\forall x\in R\)
Nên : P = x4 + (x - 3)2 \(\le x-x-3=-3\)
Vậy GTNN của P = 3 khi x = 0