K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2017

\(\dfrac{\left(sin+cos\right)^2-\left(sin-cos\right)^2}{sin.cos}\)

\(=\dfrac{\left(sin+cos-sin+cos\right)\left(sin+cos+sin-cos\right)}{sin.cos}\)

\(=\dfrac{2sin.2cos}{sin.cos}=\dfrac{4sin.cos}{sin.cos}=4\)

1 tháng 11 2018

3. Cho tam giác ABC vuông tại A . Vẽ hình và thiết lập các hệ thúc tính TSLG của góc B từ đó suy ra các hệ thức tính TSLG góc C

15 tháng 11 2022

Bài 2:

\(=\left(sin^2a+cos^2a\right)^3-3sin^2a\cdot cos^2a\left(sin^2a+cos^2a\right)+3sin^2a\cdot cos^2a\)

\(=1-3\cdot sin^2a\cdot cos^2a+3\cdot sin^2a\cdot cos^2a\)

=1

1 tháng 7 2018

E = sin^6 + cos^6 + 3sin^2.cos^2

= (sin^2 + cos^2)(sin^4 - sin^2.cos^2 + cos^4) + 3 sin^2.cos^2

= (sin^2 + cos^2)^2 - 3sin^2.cos^2 + 3sin^2.cos^2

= 1

\(\Leftrightarrow\left(sina\right)^2-\left(cosa-1\right)^2=2cosa\left(1-cosa\right)\)

\(\Leftrightarrow1-cos^2a-cos^2a+2cosa-1=2cosa-2cos^2a\)

\(\Leftrightarrow-2cos^2a+2cosa=-2cos^2a+2cosa\)(đúng)

7 tháng 6 2018

a, Sử dụng tích chéo:

Ta có:

+/ \(\cos\alpha.\cos\alpha=\cos^2\alpha\) (1)

+/ \(\left(1+\sin\alpha\right)\left(1-\sin\alpha\right)=1-\sin^2\alpha\)

\(\sin^2\alpha+\cos^2\alpha=1\)

\(\Rightarrow1-\sin^2\alpha=\cos^2\alpha\)

hay \(\left(1+\sin\alpha\right)\left(1-\sin\alpha\right)=\cos^2\alpha\) (2)

Từ (1), (2)

\(\Rightarrow\)\(\cos\alpha.\cos\alpha=\)\(\left(1+\sin\alpha\right)\left(1-\sin\alpha\right)\)

\(\Rightarrow\)\(\dfrac{\cos\alpha}{1-\sin\alpha}=\dfrac{1+\sin\alpha}{\cos\alpha}\) (đpcm)

b/ xem lại đề

7 tháng 6 2018

sr bạn nha mình ghi thiếu đằng sau biểu thức đó là = 4