K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2016

Bạn xem trả lời chi tiết ở đây nhé: https://www.facebook.com/groups/giaibaitaponline/permalink/593414480817955/?comment_id=593421160817287&notif_t=group_comment&notif_id=1464855306581173

17 tháng 10 2017

1. \(\dfrac{1}{x-1}-\dfrac{1}{x+1}\)

\(=\dfrac{1.\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{1\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{x+1}{\left(x+1\right)\left(x-1\right)}-\dfrac{x-1}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{x+1+\left(-x+1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{x+1-x+1}{\left(x+1\right)\left(x-1\right)}=\dfrac{1}{x^2-1}\)

2. \(\dfrac{x}{x^2-1}-\dfrac{1}{x-1}\)

\(=\dfrac{x}{\left(x+1\right)\left(x-1\right)}-\dfrac{x+1}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{x}{\left(x+1\right)\left(x-1\right)}+\dfrac{-\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{x+\left(-x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{-1}{x^2-1}\)

3. \(\dfrac{1}{x\left(x-y\right)}-\dfrac{1}{x\left(x-y\right)}\)

\(=\dfrac{1}{y\left(x-y\right)}+\dfrac{-1}{x\left(x-y\right)}\)

\(=\dfrac{1x}{y\left(x-y\right)x}+\dfrac{-1y}{x\left(x-y\right)y}\)

\(=\dfrac{x}{xy\left(x-y\right)}+\dfrac{-y}{xy\left(x-y\right)}\)

\(=\dfrac{x-y}{xy\left(x-y\right)}=\dfrac{1}{xy}\)

4. \(\dfrac{1}{x}-\dfrac{1}{x-1}\)

\(=\dfrac{1\left(x-1\right)}{x\left(x-1\right)}-\dfrac{1x}{\left(x-1\right)x}\)

\(=\dfrac{x-1}{x\left(x-1\right)}+\dfrac{-x}{x\left(x-1\right)}\)

\(=\dfrac{\left(x-1\right)-x}{x\left(x-1\right)}\)

\(=\dfrac{-1}{x\left(x-1\right)}\)

5. \(\dfrac{1}{x}-\dfrac{1}{x+1}\)

\(=\dfrac{1\left(x+1\right)}{x\left(x+1\right)}-\dfrac{1x}{\left(x+1\right)x}\)

\(=\dfrac{x+1}{x\left(x+1\right)}+\dfrac{-x}{x\left(x+1\right)}\)

\(=\dfrac{\left(x+1\right)-x}{x\left(x+1\right)}\)

6. \(\dfrac{1}{2x^2-10x}-\dfrac{1}{x-5}\)

\(=\dfrac{1}{2x\left(x-5\right)}-\dfrac{1}{x-5}\)

\(=\dfrac{1}{2x\left(x-5\right)}-\dfrac{1.2x}{2x\left(x-5\right)}\)

\(=\dfrac{1}{2x\left(x-5\right)}+\dfrac{-2x}{2x\left(x-5\right)}\)

\(=\dfrac{1-2x}{2x\left(x-5\right)}\)

7. \(\dfrac{x-1}{x^2-1}.\dfrac{x+1}{x+3}\)

\(=\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x^2-1\right)\left(x+3\right)}\)

\(=\dfrac{x^2-1}{\left(x^2-1\right)\left(x+3\right)}\)

8. \(\dfrac{2}{2x^2+10x}.\dfrac{x+5}{3x}\)

\(=\dfrac{2x\left(x+5\right)}{2x^2+10x.3x}\)

\(=\dfrac{2\left(x+5\right)}{2x\left(x+5\right)3x}\)

\(=\dfrac{2}{6x^2}=\dfrac{1}{3x^2}\)

3 tháng 7 2016

Ta có:

\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{2014}+\frac{1}{2015}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}+\frac{1}{2015}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1007}\right)=\frac{1}{1008}+\frac{1}{1009}+....+\frac{1}{2015}\)

Mà \(P=\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2015}\)

\(\Leftrightarrow S-P=0\) \(\Rightarrow\left(S-P\right)^{2016}=0\)

28 tháng 3 2018

oh, bai nay the maf co giao em lai cho vaof bai kiem tra lop 6 cua bon emkhocroi

19 tháng 3 2017

\(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+50}\)

\(=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{1275}\)

\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{2550}\)

\(=\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{50\cdot51}\)

\(=2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{50\cdot51}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{51}\right)\)\(=2\left(\frac{1}{2}-\frac{1}{51}\right)=2\cdot\frac{49}{102}=\frac{49}{51}\)

31 tháng 3 2018

ta có (a-1)2 ≥ 0 ∀a

<=> a2-2a+1 ≥ 0

<=>a2+4a-2a+1 ≥ 4a (cộng cả 2 vế va 4a)

<=> a2+2a+1 ≥ 4a

<=> (a+1)2 ≥ 4a

CM tương tự ta đc

(b+1)2 ≥ 4b

(c+1)2 ≥ 4c

Nhân các vế với nhau ta có

[(a+1)2+(b+1)2 +(c+1)2 ]2 ≥ 4a.4b.4c

<=> [(a+1)2+(b+1)2 +(c+1)2 ]2 ≥64abc

<=> [(a+1)2+(b+1)2 +(c+1)2 ]2 ≥64 (vì abc =1)

<=> (a+1)2+(b+1)2 +(c+1)2 ≥8 (đpcm)