Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=x14+x7+1
=(x14+x13+x12)-(x13+x12+x11)+(x11+x10+x9)-(x10+x9+x8)+(x8+x7+x6)-(x6+x5+x4)+(x5+x4+x3)-(x3+x2+x)+(x2+x+1)
Đặt B=x2+x+1
=>A=x12B-x11B+x9B-x8B+x6B-x4B+x3B-xB+B
=>A=B(x12-x11+x9-x8+x6-x4+x3-x+1)
Thay B=x2+x+1 vào A là xong
\(\left(\sqrt{1998}+\sqrt{2000}\right)^2=1998+2000+2.1998.2000=2.1999+2.1998.2000\)
\(\left(2\sqrt{1999}\right)^2=4.1999=2.1999+2.1999\)
Mà \(2.1998.2000>2.1999\)
\(=>\left(\sqrt{1998}+\sqrt{2000}\right)^2>\left(2\sqrt{1999}\right)^2=>\sqrt{1998}\)+\(\sqrt{2000}>2\sqrt{1999}\)
Câu trả lời đây bạn nhé ^^
http://olm.vn/hoi-dap/question/602523.html
Ta sẽ chứng minh bất đẳng thức sau : \(\frac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\frac{a+b}{2}}\)
\(\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)^2< \frac{a+b}{2}\Leftrightarrow\frac{a+b+2\sqrt{ab}}{4}< \frac{a+b}{2}\Leftrightarrow a+b+2\sqrt{ab}< 2\left(a+b\right)\Leftrightarrow-\left(a-2\sqrt{ab}+b\right)< 0\Leftrightarrow-\left(\sqrt{a}-\sqrt{b}\right)^2< 0\)(luôn đúng)
Vậy bất đẳng thức được chứng minh.
Áp dụng : \(\frac{\sqrt{1998}+\sqrt{2000}}{2}< \sqrt{\frac{1998+2000}{2}}=\sqrt{1999}\)
\(\Rightarrow\sqrt{1998}+\sqrt{2000}< 2.\sqrt{1999}\)
Phần chứng minh bất đẳng thức bạn ghi thêm điều kiện a,b > 0 nhé
1999 x 2000 - \(\frac{1}{1998}\) + 1999 x 2000
= 9595199,999
Mình ghi thiếu nha
1999 x 2000 - \(\frac{1}{1998}\) + 1999 x 2000 x \(\frac{7}{5}\)
= 9595199,999