Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề :
= 1/100 - (1 / 100.99 +1/99.98 + ...+ 1/3.2 +1/2.1 )
=1/100 - (1 /1.2 +1/ 2.3 +...+ 1/ 98.99 +1 / 99.100)
=1/100 -( 1- 1/ 2 +1/2 -1/3 +...+1/98 -1/99 +1/99 -1/100)
=1/100 - ( 1- 1/100)
=1/100 - 99 /100
= -98/100
= -49 /50
=1/100-(1/1x2+1/2x3+...+1/99x100)
=1/100-(1-1/2+1/2-1/3+...+1/99-1/100)
=1/100-(1-1/100)
=1/100-1+1/100
=2/100-1
=-49/50
\(M=\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{2}{98}+\frac{1}{99}\)
cộng vào mỗi phân số trong 98 phân số sau,trừ phân số cuối đi 98 , ta được :
\(M=1+\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{2}{98}+1\right)+\left(\frac{1}{99}+1\right)\)
\(M=\frac{100}{100}+\frac{100}{2}+\frac{100}{3}+...+\frac{100}{98}+\frac{100}{99}\)
chuyển phân số \(\frac{100}{100}\)ra sau , ta được :
\(M=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{98}+\frac{100}{99}+\frac{100}{100}\)
\(M=100.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}+\frac{1}{99}+\frac{1}{100}\right)\)
\(\Rightarrow\frac{M}{N}=\frac{100.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}+\frac{1}{99}+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}}=100\)
\(=\frac{99}{100}.\frac{99}{98}.\frac{98}{97}.\frac{97}{96}.....\frac{4}{3}.\frac{3}{2}.\frac{2}{1}\)
Ta loại các số giống nhau ở tử và mẫu thì được
\(\frac{99}{100}.\frac{99}{1}\)
\(=\frac{9801}{100}\)
= \(\frac{99}{100}.\frac{99}{98}.\frac{98}{97}.\frac{96}{97}...\frac{4}{3}.\frac{3}{2}.\frac{2}{1}\)
Ta loại các số giống nhau ở tử số và mẫu số thì đc :
\(\frac{99}{100}.\frac{99}{1}\)
= \(\frac{9801}{100}\)
Đặt A
=> 4 x A = 1 x 2x 3 x 4+2 .3 .4.4 + .........+ 97. 98 . 99 . 4 + 98 . 99 . 100
=> 4 x A = 1 . 2 .3 . (4 - 0) + 2 . 3 . 4 . (5 - 1) + ........+ 97 . 98 . 99 . (100 - 96 ) + 98 .99 .100 . (101 - 97 )
=> 4 x A = 1 . 2 .3 . 4 - 0. 1 .2 .3 + 2. 3. 4 .5 - 1.2 .3 .4 + ..........+ 97 . 98 . 99. 100 - 96 . 97 .98. 99 + 98 .99 . 100 .101 -97 .98 .99. 100
=> 4 x A = 98 . 99 .100 - 0. 1 .2 .3
=> A = \(\frac{98.99.100-6}{4}\)
=> A = 242548.5
Tick cho tớ nha
\(\frac{1}{100\cdot99}-\frac{1}{99\cdot98}-...-\frac{1}{1\cdot2}\)
\(\frac{1}{100}-\frac{1}{99}-\left(\frac{1}{99}-\frac{1}{98}\right)-...-\left(\frac{1}{1}-\frac{1}{2}\right)\)
\(\frac{1}{100}-\frac{1}{99}-\frac{1}{98}+\frac{1}{99}-....-\frac{1}{1}+\frac{1}{2}\)
\(-\frac{1}{1}-\frac{1}{100}\)
\(-1\frac{1}{100}\)