Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ *>p=2 thì p^2+2=6(loại vì 6 ko là số nghuyên tố)
*>p=3thì p^2+2=11(chọn vì 11 là số nghuyên tố)
=>p^3+2=3^3+2=29 (là số nghuyên tố)
*>p>3
vì p là số nguyên tố =>p ko chia hết cho 3 (1)
p thuộc Z =>p^2 là số chính phương (2)
từ (1),(2)=>p^2 chia 3 dư 1
=>p^2+2 chia hết cho 3 (3)
mặt khác p>3
=>p^2>9
=>p^2+2>11 (4)
từ (3),(4)=>p^2+2 ko là số nguyên tố (trái với đề bài)
nhầm đề , đây là bài đúng ! ^.^
1/ *>p=2 thì p^2+2=6(loại vì 6 ko là số nghuyên tố)
*>p=3thì p^2+2=11(chọn vì 11 là số nghuyên tố)
=>p^3+2=3^3+2=29 (là số nghuyên tố)
*>p>3
vì p là số nguyên tố =>p ko chia hết cho 3 (1)
p thuộc Z =>p^2 là số chính phương (2)
từ (1),(2)=>p^2 chia 3 dư 1
=>p^2+2 chia hết cho 3 (3)
mặt khác p>3
=>p^2>9
=>p^2+2>11 (4)
từ (3),(4)=>p^2+2 ko là số nguyên tố (trái với đề bài)
2/ Đặt Q(x)=P(x)-(x+1)
Q(1999)=P(1999)-(1999+1)=2000-2000=0
Q(2000)=P(2000)-(2000+1)=2001-2001=0
=>x-1999,x-2000 là các nghiệm của Q(x)
Đặt Q(x)=(x-1999)(x-2000).g(x)
Do P(x) là đa thức bậc 3 có hệ số x^3 là số nguyên khác 0,-1
=>Q(x) là đa thức bậc 3 có hệ số x^3 là số nguyên khác 0,-1
=>g(x)có dạng ax+b (a thuộc Z,a khác 0,-1)
=>Q(x) =(x-1999)(x-2000).( ax+b)
=>P(x)=(x-1999)(x-2000).( ax+b)+( x+1)
P(2001)=(2001-1999)(2001-2000)
(a.2001+b)+(2001+1)
=2(2001a+b)+2002
=4002a+2b+2002
P(1998)= (1998-1999)(1998-2000)(a.1998+b)
+(1998+1)
=2(a.1998+b)+1999
=3996a+2b+1999
=>P(2001)- P(1998)= 4002a+2b+2002-3996a-2b-1999
=6a+3
=3(a+2)
Do a thuộc Z,a khác -1
=>a+2 thuộc Z,a+2 khác 1
=>3(a+2) chia hết cho 3 , 3(a+2) khác 3
=>3(a+2) là hợp số
=> P(2001) - P(1998) là hợp số
Để phân số này tối giản thì 2 số này phải nguyên tố cùng nhau.
Gọi ƯCLN(12n + 1; 30n + 2) là d
=> 12n + 1 chia hết cho d => 5(12n + 1) chia hết cho d
30n + 2 chia hết cho d => 2(30n + 2) chia hết cho d
Từ 2 điều trên => 5(12n + 1) - 2(30n + 2) chia hết cho d
=> 60n + 5 - 60n - 4 chia hết cho d
=> (60n - 60n) + (5 - 4) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(12n + 1; 30n + 2) = 1
hay phân số 12n + 1/30n + 2 là phân số tối giản
Vậy...
Gọi d thuộc ƯC (12n+1, 30n+2). Ta có:
12n+1 chia hết cho d, 30n+2 chia hết cho d
=> 12n+1 - 30n+2 chia hết cho d
=> 5(12n+1) - 2(30n+2) chia hết cho d
=> 60n+5 - 60n+4 chia hết cho d
=> (60n - 60n) + (5-4) chia hết cho d
=> 1 chia hết cho d
=> d = 1 hoặc d = -1
Vậy phân số trên là phân số tối giản.
a) Gọi (2n+2,8n+7) là d \(\left(d\inℕ^∗\right)\)
Vì (2n+2,8n+7) là d
\(\Rightarrow\hept{\begin{cases}2n+2⋮d\\8n+7⋮d\end{cases}}\)
\(\Rightarrow\)(2n+2)-(8n+7)\(⋮\)d
\(\Rightarrow\)(8n+8)-(8n+7)\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
\(\Rightarrow\)d=1
\(\Rightarrow\)(2n+2,8n+7)=1 nên tử số và mẫu số là số nguyên tố cùng nhau
\(\Rightarrow\frac{2n+2}{8n+7}\)là phân số tối giản
Vậy \(\frac{2n+2}{8n+7}\)là phân số tối giản.
Các phần sau tương tự.
gọi d là ƯC(5n + 4; 5n + 11)
\(\Rightarrow\hept{\begin{cases}5n+4⋮d\\5n+11⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+12⋮d\\15n+11⋮d\end{cases}}}\)
\(\Rightarrow15n+12-15n-11⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\in\left\{\pm1\right\}\)
\(\Rightarrow\frac{5n+4}{5n+11}\) là phân số tối giản
5:\(\frac{2}{5}\)=37.5
30 ung ho nha