Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{1}{6}\right)^2\times6^2+\left(0,6\right)^5\div\left(0,2\right)^6\)
\(=\dfrac{1}{36}\times36+\dfrac{243}{3125}\div\dfrac{1}{15625}\)
\(=1+1215\)
\(=1216\)
a) \(\dfrac{2^7.9^3}{6^5.8^2}=\dfrac{2^7.\left(3^2\right)^3}{\left(2.3\right)^5.\left(2^3\right)^2}=\dfrac{2^7.3^6}{2^5.3^5.2^6}=\dfrac{3}{2^4}=\dfrac{3}{16}\)
a) \(\dfrac{2^7.9^3}{6^5.8^2}=\dfrac{2^7.\left(3^2\right)^3}{\left(2.3\right)^5.\left(2^3\right)^2}=\dfrac{2^7.3^6}{2^5.3^5.2^6}=\dfrac{2^7.3^6}{2^{11}.3^5}=\dfrac{3}{2^4}=\dfrac{3}{16}\)
b) \(\dfrac{\left(0,6\right)^5}{\left(0,2\right)^6}=\dfrac{\left(0,2.3\right)^5}{\left(0,2\right)^6}=\dfrac{\left(0,2\right)^5.3^5}{\left(0,2\right)^6}=\dfrac{3^5}{0,2}=1215\)
( 1 / 6 )2 . 62 + ( 0,6 ) 5 / ( 0 , 2 ) 6
= 1 + 35 . (0 , 2)5 / 0,2 . ( 0, 2 )5
=1 + 35 / 0, 2
= 1 + 243 : 2 / 10
= 1 + 1215
= 1216
\(a\)) \(\left(4^2.4^3\right):2^{10}\)
\(=4^5:2^{10}\)
\(=\left(2^2\right)^5:2^{10}\)
\(=2^{10}:2^{10}\)
\(=1\)
\(b\)) \(\left(0,6\right)^5:\left(0,2\right)^6\)
\(=\left(\frac{3}{5}\right)^5:\left(\frac{1}{5}\right)^6\)
\(=\frac{3^5}{5^5}:\frac{1^6}{5^6}\)
\(=\frac{3^5}{5^5}.5^6\)
\(=\frac{3^5.5^6}{5^5}\)
\(=3^5.5\)
\(=243.5\)
\(=1215\)
\(c\)) \(\left(2^7.9^3\right):\left(6^5.8^2\right)\)
\(=\left[2^7.\left(3^2\right)^3\right]:\left[\left(2.3\right)^5.\left(2^4\right)^2\right]\)
\(=\left(2^7.3^6\right):\left[2^5.3^5.2^8\right]\)
\(=\left(2^7.3^6\right).\left(\frac{1}{2^5.3^5.2^8}\right)\)
\(=\frac{2^7.3^6.1}{\left(2^5.2^8\right).3^5}\)
\(=\frac{2^7.3^6}{2^{13}.3^5}\)
\(=\frac{3}{2^6}\)
\(=\frac{3}{64}\)
\(\frac{\left(0,6\right)^5}{\left(0,2\right)^6}=\frac{\left(0,6\right)^5}{\left(0,2\right)^5.0,2}=\left(\frac{0,6}{0,2}\right)^5.\frac{1}{\frac{1}{5}}=3^5.5=243.5=1215\)
\(\frac{2^7.9^3}{6^5.8^2}=\frac{2^7.\left(3^2\right)^3}{\left(2.3\right)^5.\left(2^3\right)^2}=\frac{2^7.3^6}{2^5.3^5.2^6}=\frac{2^7.3.3^5}{2^7.2^4.3^5}=\frac{3}{16}\)
\(=\left(\dfrac{1}{6}\cdot6\right)^2+\dfrac{0.2^5\cdot0.3^5}{0.2^5\cdot0.2}\)
\(=1+\dfrac{0.3^5}{0.2}\)
\(=1+\dfrac{243}{20000}=\dfrac{20243}{20000}\)