K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2016

\(P\left(x\right)=x^4+ax^3+bx^2+cx+d\)

Theo đề ta có:

\(\hept{\begin{cases}1+a+b+c+d=0\\81+27a+9b+3c+d=0\\625+125a+25b+5c+d=0\end{cases}\Leftrightarrow\hept{\begin{cases}a+b+c+d=-1\\27a+9b+3c+d=-81\\125a+25b+5c+d=-625\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-9\\b=23\\c=-15;\end{cases}d=-1}}\)

20 tháng 5 2021

làm cái mô tê gì thế
ko hiểu chút nào

NV
20 tháng 3 2022

Xét đa thức bậc 8: \(P\left(x\right)=x^8+\dfrac{x^3-x}{2}\)

Ta có, \(P\left(x\right)-P\left(-x\right)=x^8+\dfrac{x^3-x}{2}-\left(-x\right)^8-\dfrac{\left(-x\right)^3-\left(-x\right)}{2}=x^3-x\)

Thay \(x=1;2;3;4\) đều thỏa mãn

\(\Rightarrow P\left(5\right)-P\left(-5\right)=5^3-5=120\)

20 tháng 3 2022

Em cám ơn thầy Lâm ạ!

7 tháng 7 2018

Với \(k\in N;k\ne0\) ta có :

\(\frac{1}{\left(k+1\right)\sqrt{k}+k\sqrt{\left(k+1\right)}}=\frac{1}{\sqrt{k\left(k+1\right)}\left(\sqrt{k}+\sqrt{k+1}\right)}\)

\(=\frac{\sqrt{k+1}+\sqrt{k}}{\sqrt{k\left(k+1\right)}\left(\sqrt{k+1}-\sqrt{k}\right)\left(\sqrt{k+1}+\sqrt{k}\right)}=\frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}}\)

\(=\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\)

Áp dụng ta có :

\(M=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{120}}-\frac{1}{\sqrt{121}}=1-\frac{1}{11}=\frac{10}{11}\)

a) Thay x=4 vào biểu thức \(B=\dfrac{3}{\sqrt{x}-1}\), ta được:

\(B=\dfrac{3}{\sqrt{4}-1}=\dfrac{3}{2-1}=3\)

Vậy: Khi x=4 thì B=3

b) Ta có: P=A-B

\(\Leftrightarrow P=\dfrac{6}{x-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{3}{\sqrt{x}-1}\)

\(\Leftrightarrow P=\dfrac{6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{6+x-\sqrt{x}-3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{x-\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

9 tháng 11 2021

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

a) Vì \(-1< 0\) nên không tính được A

a) Vì \(x\ne1\) nên không tính được A

 

24 tháng 9 2017

\(=\frac{3\left(\sqrt{x}-1\right)-\left(\sqrt{x}+1\right)-\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{3\sqrt{x}-3-\sqrt{x}-1-\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{1}{\sqrt{x}-1}\)

x=\(24-16\sqrt{2}=4^2-2.4.\sqrt{8}+\left(2\sqrt{2}\right)^2=\left(4-2\sqrt{2}\right)^2\)

24 tháng 9 2017

a) \(P=\frac{3}{\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}-5}{x-1}\)

\(P=\frac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-5}{x-1}\)

\(P=\frac{3\sqrt{x}-3-\sqrt{x}-1}{x-1}-\frac{\sqrt{x}-5}{x-1}\)

\(P=\frac{3\sqrt{x}-3-\sqrt{x}-1-\sqrt{x}+5}{x-1}\)

\(P=\frac{\sqrt{x}+1}{x-1}\)

vay \(P=\frac{\sqrt{x}+1}{x-1}\)

b)  thay vao P ta duoc:

\(P=\frac{\sqrt{24-16\sqrt{2}}+1}{24-16\sqrt{2}-1}\)

\(P=\frac{\sqrt{\left(2\sqrt{2}\right)^2-2.2.4\sqrt{2}+4^2}+1}{\left(2\sqrt{2}\right)^2-2.2.4\sqrt{2}+4^2-1}\)

\(P=\frac{\sqrt{\left(2\sqrt{2}-4\right)^2}+1}{\left(2\sqrt{2}-4\right)^2-1^2}\)

\(P=\frac{2\sqrt{2}-4+1}{\left(2\sqrt{2}-4-1\right)\left(2\sqrt{2}-4+1\right)}\)

\(P=\frac{2\sqrt{2}-3}{\left(2\sqrt{2}-5\right)\left(2\sqrt{2}-3\right)}\)

\(P=\frac{1}{2\sqrt{2}-5}\)

vay \(P=\frac{1}{2\sqrt{2}-5}\)

6 tháng 9 2021

a, ĐK: \(x\ge0;x\ne1\)

\(P=\left(1+\dfrac{2}{\sqrt{x}+1}+\dfrac{3}{\sqrt{x}-1}\right).\left(1-\dfrac{6}{\sqrt{x}+5}\right)\)

\(=\left[\dfrac{x-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right].\dfrac{\sqrt{x}+5-6}{\sqrt{x}+5}\)

\(=\dfrac{x+5\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}-1}{\sqrt{x}+5}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

6 tháng 9 2021

b, \(P=\dfrac{\sqrt{x}}{\sqrt{x}+1}=1-\dfrac{1}{\sqrt{x}+1}\in Z\)

\(\Leftrightarrow\sqrt{x}+1\in\left\{-1;1\right\}\)

\(\Leftrightarrow\sqrt{x}=0\)

\(\Leftrightarrow x=0\left(tm\right)\)

Vậy ta có điều phải chứng minh.

a: \(P=\left(\dfrac{1}{m\left(m-1\right)}+\dfrac{1}{m-1}\right)\cdot\dfrac{\left(m-1\right)^2}{m+1}\)

\(=\dfrac{m+1}{m\left(m-1\right)}\cdot\dfrac{\left(m-1\right)^2}{m+1}=\dfrac{m-1}{m}\)

b: Khi m=1/2 thì \(P=\left(\dfrac{1}{2}-1\right):\dfrac{1}{2}=\dfrac{-1}{2}\cdot2=-1\)

2 tháng 9 2019

AI GIẢI HỘ MÌNH K CHO Ạ!!!

13 tháng 9 2019

1)  a) Căn thức có nghĩa \(\Leftrightarrow4-2x\ge0\Leftrightarrow2x\le4\Leftrightarrow x\le2\)

b) Thay x = 2 vào biểu thức A, ta được: \(A=\sqrt{4-2.2}=\sqrt{0}=0\)

Thay x = 0 vào biểu thức A, ta được: \(A=\sqrt{4-2.0}=\sqrt{4}=2\)

Thay x = 1 vào biểu thức A, ta được: \(A=\sqrt{4-2.1}=\sqrt{2}\)

Thay x = -6 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-6\right)}=\sqrt{16}=4\)

Thay x = -10 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-10\right)}=\sqrt{24}=2\sqrt{6}\)

c) \(A=0\Leftrightarrow\sqrt{4-2x}=0\Leftrightarrow4-2x=0\Leftrightarrow x=2\)

\(A=5\Leftrightarrow\sqrt{4-2x}=5\Leftrightarrow4-2x=25\Leftrightarrow x=\frac{-21}{2}\)

\(A=10\Leftrightarrow\sqrt{4-2x}=10\Leftrightarrow4-2x=100\Leftrightarrow x=-48\)