Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = x2 + x + 1 = ( x2 + x + 1/4 ) + 3/4 = ( x + 1/2 )2 + 3/4 ≥ 3/4 ∀ x
Dấu "=" xảy ra khi x = -1/2
=> MinA = 3/4 <=> x = -1/2
B = -x2 - 4x + 12 = -( x2 + 4x + 4 ) + 16 = -( x + 2 )2 + 16 ≤ 16 ∀ x
Dấu "=" xảy ra khi x = -2
=> MaxB = 16 <=> x = -2
C = \(\frac{5}{x^2+6}\)
Ta có : x2 + 6 ≥ 6 ∀ x
<=> \(\frac{1}{x^2+6}\le\frac{1}{6}\forall x\)
<=> \(\frac{5}{x^2+6}\le\frac{5}{6}\forall x\)
Dấu "=" xảy ra khi x = 0
=> MaxC = 5/6 <=> x = 0
\(=\left(x^2-2.x.2-4\right)-4\)
=\(^{\left(x-2\right)^2-4}\)
vậy GTNN =-4 tại x=2
Ta có : 9x2 + 12x + 15
= (3x)2 + 2.3x.2 + 4 + 11
= (3x + 2)2 + 11
Mà (3x + 2)2 \(\ge0\forall x\)
Nên (3x + 2)2 + 11 \(\ge11\forall x\)
Vậy Bmin = 11 dấu "=" sảy ra khi và chỉ khi x = \(-\frac{2}{3}\)
Ta có : A = x2 - 4x - 6
= x2 - 4x + 4 - 10
= (x - 2)2 - 10
Mà (x - 2)2 \(\ge0\forall x\)
=> (x - 2)2 - 10 \(\ge-10\forall x\)
Vậy Amin = -10 dấu "=" sảy ra khi và chỉ khi x = 2