K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2020

A = x2 + x + 1 = ( x2 + x + 1/4 ) + 3/4 = ( x + 1/2 )2 + 3/4 ≥ 3/4 ∀ x

Dấu "=" xảy ra khi x = -1/2

=> MinA = 3/4 <=> x = -1/2

B = -x2 - 4x + 12 = -( x2 + 4x + 4 ) + 16 = -( x + 2 )2 + 16 ≤ 16 ∀ x

Dấu "=" xảy ra khi x = -2

=> MaxB = 16 <=> x = -2

C = \(\frac{5}{x^2+6}\)

Ta có : x2 + 6 ≥ 6 ∀ x

<=> \(\frac{1}{x^2+6}\le\frac{1}{6}\forall x\)

<=> \(\frac{5}{x^2+6}\le\frac{5}{6}\forall x\)

Dấu "=" xảy ra khi x = 0

=> MaxC = 5/6 <=> x = 0

5 tháng 7 2017

Ta có : 9x2 + 12x + 15

= (3x)2 + 2.3x.2 + 4 + 11

= (3x + 2)2 + 11

Mà (3x + 2)2 \(\ge0\forall x\)

Nên (3x + 2)2 + 11 \(\ge11\forall x\)

Vậy Bmin = 11 dấu "=" sảy ra khi và chỉ khi x = \(-\frac{2}{3}\)

5 tháng 7 2017

Ta có : A = x2 - 4x - 6 

= x2 - 4x + 4 - 10

= (x - 2)2 - 10

Mà (x - 2)\(\ge0\forall x\)

=> (x - 2)2 - 10 \(\ge-10\forall x\)

Vậy Amin = -10 dấu "=" sảy ra khi và chỉ khi x = 2

1 tháng 8 2018

a)  \(A=x^2+2x+5=\left(x+1\right)^2+4\ge4>0\)

Vậy MIN A = 4   khi  x = -1

b)  \(B=x^2+4x+12=\left(x+2\right)^2+8\ge8>0\)

Vậy MIN  B = 8   khi  x = -2

c)  \(C=x^2+6x+31=\left(x+3\right)^2+22\ge22>0\)

Vậy MIN C = 22   khi  x = -3

d) \(D=4x^2+4x+35=\left(2x+1\right)^2+34\ge34>0\)

Vậy MIN  D = 34  khi  x = -1/2

1 tháng 8 2018

\(A=x^2+2x+5\)

\(A=\left(x^2+2.x.1+1^2\right)+4\)

\(A=\left(x+1\right)^2+4\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+1\right)^2+4\ge4\forall x\)

\(\Rightarrow A>0\forall x\)

\(A=4\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Vậy \(A_{min}=4\Leftrightarrow x=-1\)

\(B=x^2+4x+12\)

\(B=\left(x^2+2.x.2+2^2\right)+8\)

\(B=\left(x+2\right)^2+8\)

đến đó tương tự câu a

\(C=x^2+6x+31\)

\(C=\left(x^2+2.x.3+3^2\right)+22\)

\(C=\left(x+3\right)^2+22\)

đến đó tương tự câu a

\(D=4x^2+4x+35\)

\(D=\left(2x\right)^2+2.2x.1+1+34\)

\(D=\left(2x+1\right)^2+34\)

đến đó tương tự câu a

Tham khảo nhé~

22 tháng 7 2017

\(=\left(x^2-2.x.2-4\right)-4\)

=\(^{\left(x-2\right)^2-4}\)

vậy GTNN =-4 tại x=2

22 tháng 7 2017

mới học nên thông cảm

22 tháng 8 2020

A = x2 - 4x + 1 

A = ( x2 - 4x + 4 ) - 3

A = ( x - 2 )2 - 3

( x - 2 )2 ≥ 0 ∀ x => ( x - 2 )2 - 3 ≥ -3

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> MinA = -3 <=> x = 2

B = 4x2 + 4x + 11

B = 4( x2 + x + 1/4 ) + 10

B = 4( x + 1/2 )2 + 10

4( x + 1/2 )2 ≥ 0 ∀ x => 4( x + 1/2 )2 + 10 ≥ 10

Đẳng thức xảy ra <=> x + 1/2 = 0 => x = -1/2

=> MinB = 10 <=> x = -1/2

C = ( x - 1 )( x + 3 )( x + 2 )( x + 6 )

C = [ ( x - 1 )( x + 6 ) ][ ( x + 3 )( x + 2 ) ]

C = [ x2 + 5x - 6 ][ x2 + 5x + 6 ]

C = ( x2 + 5x )2 - 62 = ( x2 + 5x )2 - 36

( x2 + 5x )2 ≥ 0 ∀ x => ( x2 + 5x )2 - 36 ≥ -36

Đẳng thức xảy ra <=> x2 + 5x = 0

                             <=> x( x + 5 ) = 0

                             <=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

=> MinC = -36 <=> x = 0 hoặc x = -5

D = 5 - 8x - x2

D = -( x2 + 8x + 16 ) + 21

D = -( x + 4 )2 + 21

-( x + 4 )2 ≤ 0 ∀ x => -( x + 4 )2 + 21 ≤ 21

Đẳng thức xảy ra <=> x + 4 = 0 => x = -4

=> MaxD = 21 <=> x = -4

E = 4x - x2 + 1

E = -( x2 - 4x + 4 ) + 5

E = -( x - 2 )2 + 5

-( x - 2 )2 ≤ 0 ∀ x => -( x - 2 )2 + 5 ≤ 5 

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> MaxE = 5 <=> x = 2