K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2020

15 pens cost:

(15000 : 5). 15 = 45000 (đ)

7 pencils cost:

59000 - 45000 = 14000 (đ)

One pencil costs:

14000 : 7 = 2000 (đ)

26 tháng 4 2016

Hint: Supppose that Darwin bought x eraser boxes, then he bought \(\frac{4}{5}x\) pencil boxs. (\(x\in N,x>0\)

Because Darwin spent 240 dollars so we have equation:

\(4x+\left(4+6\right).\frac{4}{5}x=240\)

\(\Rightarrow12x=240\Rightarrow x=20\)

So Darwin bought 20 eraser boxes and 16 pencil boxes.

Have a good time :))

25 tháng 4 2016

 I don't no

3 tháng 7 2021

a, \(\sqrt{15}+\sqrt{8}< \sqrt{16}+\sqrt{9}=4+3=7\)

\(\Rightarrow\sqrt{15}+\sqrt{8}< 7\)

b, \(\sqrt{10}+\sqrt{17}+1>\sqrt{9}+\sqrt{16}+1=3+4+1=8\)

\(\sqrt{61}< \sqrt{64}=8\)

\(\Rightarrow\sqrt{10}+\sqrt{17}+1>\sqrt{61}\)

c, \(\sqrt{10}+\sqrt{5}+1>\sqrt{9}+\sqrt{4}+1=3+2+1=6\)

\(\sqrt{35}< \sqrt{36}=6\)

\(\Rightarrow\sqrt{10}+\sqrt{5}+1>\sqrt{35}\)

25 tháng 3 2019

\(\frac{60}{x+5}+\frac{60}{x-4}=\frac{120}{x}\Rightarrow\frac{1}{x+5}+\frac{1}{x-4}=\frac{2}{x}\)

\(\Rightarrow\frac{x\left(x-4\right)+x\left(x+5\right)-2\left(x+5\right)\left(x-4\right)}{x\left(x+5\right)\left(x-4\right)}=0\)

\(\Rightarrow\frac{x^2-4x+x^2+5x-2x^2-2x+40}{x\left(x+5\right)\left(x-4\right)}=0\)

\(\frac{-x+40}{x\left(x+5\right)\left(x-4\right)}=0\)

mà x(x+5)(x-4) khác 0 nên 

-x+40=0

 nên x=40

a: =>-x+2x=3-7

=>x=-4

b: =>6x+2+2x-5=0

=>8x-3=0

hay x=3/8

c: =>5x+2x-2-4x-7=0

=>3x-9=0

hay x=3

d: =>10x2-10x2-15x=15

=>-15x=15

hay x=-1

AH
Akai Haruma
Giáo viên
5 tháng 3 2020

Lời giải:

$(2x-3)(3x-2)-3(2x-5)=0$

$\Leftrightarrow 6x^2-4x-9x+6-6x+15=0$

$\Leftrightarrow 6x^2-19x+21=0$

$\Leftrightarrow 6(x-\frac{19}{12})^2=\frac{-143}{24}< 0$ (vô lý)

Do đó không tồn tại $x$ thỏa mãn pt.

26 tháng 9 2016

(a+b+c)^3 thì viết được thành [(a+b)+c)]^3 rồi AD hằng đẳng thức để tính. Còn với (a^3+b^3+c^3) ta viết được (a+b)^3 -3a^2b -3ab^2 + c^3=(a+b)^3 -3ab(a+b)+c^3 ...thay vào rồi đổi biến

11 tháng 10 2017

 k bt nhoak

15 tháng 10 2016

=\(\left(2x-5\right)\left(4-3x\right)+\left(3x+11\right)\left(2x-5\right)-15\left(2x-5\right)\)

=\(\left(2x-5\right)\left(4-3x+3x-11-15\right)\)

=0
\(\left(2x-5\right)\cdot0\)

14 tháng 4 2018

Nếu:    \(x-1\ge0\)  \(\Leftrightarrow\)\(x\ge1\)  thì:   \(\left|x-1\right|=x-1\)

Khi đó ta có:      \(x^2-3x+2+x-1=0\)

                 \(\Leftrightarrow\)          \(\left(x-1\right)^2=0\)

                 \(\Leftrightarrow\)              \(x-1=0\)

                 \(\Leftrightarrow\)                \(x=1\)  (thỏa mãn)

Nếu   \(x-1< 0\)\(\Leftrightarrow\)\(x< 1\)  thì        \(\left|x-1\right|=1-x\)

Khi đó ta có:      \(x^2-3x+2+1-x=0\)

                   \(\Leftrightarrow\)     \(x^2-4x+3=0\)

                   \(\Leftrightarrow\)  \(\left(x-1\right)\left(x-3\right)=0\)

                   \(\Leftrightarrow\) \(\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=3\end{cases}}\) (không thỏa mãn)

Vậy....

14 tháng 4 2018

Lập bảng xét dấu :

x 1 
x-1-0+

+) Nếu \(x\ge1\Leftrightarrow|x-1|=x-1\)

\(pt\Leftrightarrow x^2-3x+2+\left(x-1\right)=0\)

\(\Leftrightarrow x^2-3x+2+x-1=0\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\left(tm\right)\)

+) Nếu \(x< 1\Leftrightarrow|x-1|=1-x\)

\(pt\Leftrightarrow x^2-3x+2+\left(1-x\right)=0\)

\(\Leftrightarrow x^2-3x+2+1-x=0\)

\(\Leftrightarrow x^2-4x+3=0\)

\(\Leftrightarrow\left(x^2-4x+4\right)-1=0\)

\(\Leftrightarrow\left(x-2\right)^2=1\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=-\sqrt{1}\\x-2=\sqrt{1}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-2=-1\\x-2=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\) ( loại )

Vậy phương trình có tập nghiệm  \(S=\left\{1\right\}\)