K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2022

A B C D E

a/ Ta có

tg ABC cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\) (góc ở đáy tg cân) (1)

\(\widehat{ABC}+\widehat{ABD}=\widehat{DBC}=180^o\) (2)

\(\widehat{ACB}+\widehat{ACE}=\widehat{BCE}=180^o\) (3)

Từ (1) (2) (3) \(\Rightarrow\widehat{ABD}=\widehat{ACE}\)

b/

Xét tg ABD và tg ACE có

AB=AC (cạnh bên tg cân ABC)

\(\widehat{ABD}=\widehat{ACE}\) (cmt)

BD=CE (gt)

=> tg ABD = tg ACE (c.g.c) => AD=AE => tg ADE là tg cân

9 tháng 8 2023

Ta có:

 

7 tháng 3 2023

a)

Xét \(\Delta AOD\) và \(\Delta COB\) có: \(\left\{{}\begin{matrix}OA=OC\left(gt\right)\\\widehat{O}:chung\\OB=OD\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AOD=\Delta COB\left(c.g.c\right)\)

\(\Rightarrow AD=BC\left(\text{2 cạnh tương ứng}\right)\left(\text{đpcm}\right)\)

b) 

Nối A với C

Ta có: \(\left\{{}\begin{matrix}OA=OC\\OB=OD\end{matrix}\right.\left(gt\right)\Rightarrow OA-OB=OC-OD\)

Hay \(AB=CD\)

Xét \(\Delta ABC\) và \(\Delta CDA\) có: \(\left\{{}\begin{matrix}AB=CD\left(cmt\right)\\AC:chung\\AD=BC\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta ABC=\Delta DCA\left(c.c.c\right)\)

\(\Rightarrow\widehat{ABC}=\widehat{CDA}\left(\text{2 góc tương ứng}\right)\)

Vì \(\Delta AOD=\Delta COB\left(cmt\right)\Rightarrow\widehat{A}=\widehat{C}\left(\text{2 góc tương ứng}\right)\)

Xét \(\Delta ABE\) và \(\Delta CDE\) có: \(\left\{{}\begin{matrix}\widehat{ABC}=\widehat{CDA}\left(cmt\right)\\AB=CD\left(cmt\right)\\\widehat{A}=\widehat{C}\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta ABE=\Delta CDE\left(g.c.g\right)\left(\text{đpcm}\right)\)

c) Vì \(\Delta ABE=\Delta CDE\left(cmt\right)\Rightarrow AE=CE\left(\text{2 cạnh tương ứng}\right)\)

Xét \(\Delta AOE\) và \(\Delta COE\) có: \(\left\{{}\begin{matrix}OA=OC\left(gt\right)\\\widehat{A}=\widehat{C}\left(cmt\right)\\AE=CE\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AOE=\Delta COE\left(c.g.c\right)\\ \Rightarrow\widehat{AOE}=\widehat{COE}\left(\text{2 góc tương ứng}\right)\)

`=> OE` là phân giác của \(\widehat{xOy}\) (đpcm)

7 tháng 3 2023

em bổ sung hình nhé

15 tháng 5 2021

undefined

14 tháng 4 2022

đoạn cm tam giác ade vuông bạn dùng tính chất j thế nói mik đc ko

10 tháng 1 2019

Bạn xem lại chỗ "CE=BD". 

10 tháng 1 2019

đúng r mà bn

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = ODa) Chứng minh tam giác OAD = tam giác OCBb) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMBc) Chứng minh rằng OM là tia phân giác của góc xOy2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BCa) Chứng minh tam giác ABM = tam giác...
Đọc tiếp

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = OD

a) Chứng minh tam giác OAD = tam giác OCB

b) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMB

c) Chứng minh rằng OM là tia phân giác của góc xOy

2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC

a) Chứng minh tam giác ABM = tam giác ACM

b) Chứng minh AM vuông góc với BC.

c) Trên cạnh BA lấy điểm E, trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh tam giác EBC = tam giác ECB

d) Chứng minh EF = BC

3. Cho đường thẳng a. Trên cùng một nửa mặt phẳng có bờ là dường thẳng a lấy hai điểm A và B. Từ A vẽ AH vuông góc với đường thẳng a (H thuộc a). Trên tia đối của tia HA lấy điểm C sao cho HC = HA. Từ B vẽ BK vuông góc với đường thẳng a (K thuộc a). Trên tia đối của tia KB lấy điểm D sao cho KB = KD. Đoạn thẳng AD cắt đường thẳng a tại E. Nối E với C và E với B

a) Chứng minh rằng: EA = EC và EB = ED

b) Chứng minh rằng: C, E, B thẳng hàng

c) Gọi M là trung điểm của đoạn thẳng AB, N là trung điểm của đoạn thẳng CD. Chứng minh rằng EM = EN

4. Cho tam giác ABC. D, E lần lượt là trung điểm của đoạn thẳng AB, AC. Trên tia đối của tia DC lấy điểm M sao cho DM = DC. Trên tia đối cuả tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng

a) Tam giác DBC = tam giác DAM

b) AM//BC

c) M, A, N thẳng hàng

0
28 tháng 2 2021
 
 

1.

a) Xét ΔADE có :

HE là đường trung tuyến của AD HA=HD )(1)

Ta thấy HC=12BC ( AH là đường trung tuyến của BC )

Mà BC = CE (gt )

⇒HC=12CE (2)

Từ (1) và (2) ⇒C là trọng tâm của ΔADE

b) Hơi khó đấy :)

Xét ΔAHB và ΔAHC có :

HAHA chung

HB=HC ( AH là đường trung tuyến của BC )

AB=AC( ΔABC cân tại A )

Do đó : ΔAHB=ΔAHC(c−c−c)

⇒AHBˆ=AHCˆ( hai góc tương ứng )

Mà AHBˆ+AHCˆ=1800

⇒AHB^=AHC^=1800/2=90o

Xét ΔAHEvà ΔHED có :

HEHE chung

HA=HD( HE là đường trung tuyến của AD )

AHEˆ=DHEˆ(=900)

Do đó : ΔAHE=ΔDHE ( hai cạnh góc vuông )

⇒AEHˆ=DEHˆ ( góc tương ứng ) (*)

Vì C là trọng tâm của ΔAED là đường trung tuyến của DE )

Xét vuông tại H có : HM là đường trung tuyến nối từ đỉnh H đến DE

⇒HM=DM (1)

Lưu ý : Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền . Tức HM=12DE Mà 12DE=DM⇒HM=DM

Trở lại vào bài :

Mặt khác DM=ME(cmt)(2)

Từ (1) và (2) ⇒HM=ME

⇒ΔHME⇒ΔHME cân tại M

⇒MHEˆ=MEHˆ

Dễ thấy MEHˆ=HEAˆ(cmt)

⇒MHEˆ=HEAˆ

mà hai góc này ở vị trí so le trong

⇒HM⇒HM//AE(đpcm)

 
Bài 1: Cho tam giác ABC có M là trung điểm cạnh BC. Trên tia đối của tia MA lấy D sao cho MA=MD. Tìm các tam giác bằng nhau có trên hình vẽ và chứng minh điều đó.Bài 2: Cho hai điểm A và B nằm trên đường thẳng xy, trên cùng một nửa mặt phẳng bờ là đường thẳng xy ta kẻ hai đoạn AH và BK cùng vuông góc với xy sao cho AH=BK. a) Chỉ ra hai tam giác bằng nhau và chứng minh.b) Chỉ ra các cạnh các góc...
Đọc tiếp

Bài 1: Cho tam giác ABC có M là trung điểm cạnh BC. Trên tia đối của tia MA lấy D sao cho MA=MD. Tìm các tam giác bằng nhau có trên hình vẽ và chứng minh điều đó.

Bài 2: Cho hai điểm A và B nằm trên đường thẳng xy, trên cùng một nửa mặt phẳng bờ là đường thẳng xy ta kẻ hai đoạn AH và BK cùng vuông góc với xy sao cho AH=BK. 

a) Chỉ ra hai tam giác bằng nhau và chứng minh.

b) Chỉ ra các cạnh các góc tương ứng.

c) Gọi O là trung điểm HK. So sánh hai tam giác AOH và BOK.

Bài 3: Cho  ABC, trên tia đối của tia AB, xác định điểm D sao cho AD = AB. Trên tia đối của tia AC  xác định điểm E sao cho AE = AC. Chứng minh rằng:

a) BC // ED b)  DBC =  BDE

Bài 4: Cho hai đoạn AB và CD cắt nhau tại trung điểm O của mỗi đường. Chứng minh BC // AD.

Bài 5: Cho tam giác ABC có AB = AC. Tia phân giác của góc A cắt BC ở D. 

Chứng minh: a) DB = DC b) AD  BC

Bài 6: Cho tam giác ABC có AB = AC, M là trung điểm của BC, trên tia AM lấy D sao cho AM = MD. Chứng minh: 

a)  ABM =  DCM. b) AB // DC. c) AM BC

Bài 7: Qua trung điểm M của đoạn AB vẽ đường thẳng d vuông góc với AB. Trên đường thẳng d lấy điểm K. Chứng minh KM là tia phân giác của góc AKB.

Bài 8: Cho góc xOy có Ot là tia phân giác. Trên hai tia Ox, Oy lần lượt lấy các điểm M, N sao cho OM = ON. Trên tia Ot lấy P bất kì. Chứng minh 

a) PM = PN.

b) Khoảng cách từ P đến hai cạnh của góc xOy bằng nhau.

Bài 9: Cho tam giác ABC có góc A bằng 900. Trên tia đối của tia CA lấy điểm D sao cho CD = CA. Trên tia đối của tia CB lấy điểm E sao cho CE = CB.

a) Chứng minh: AB = DE b) Tính số đo góc EDC?

Bài 10: Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng bờ là đường thẳng BC không chứa điểm A vẽ tia Cx song song với AB. Trên tia Cx lấy điểm D sao cho CD = AB. Chứng minh: 

a) MA = MD b) BA điểm A, M, D thẳng hàng.

Bài 11: Cho tam giác ABC, M, N là trung điểm của AB và AC. Trên tia đối của tia NM xác định điểm P sao cho NP = MN. Chứng minh:

a) CP//AB b) MB = CP c) BC = 2MN

Bài 12: Cho ∆ABC gọi M, N lần lượt là trung điểm của AC, AB.  Trên tia đối của tia MB lấy điểm D sao cho MD = MB. Trên tia đối của tia NC lấy điểm E sao cho NE = NC. Chứng minh :

a)  ∆AMD = ∆CMB

b)  AE // BC

c)  A là trung điểm của DE

Bài 13: Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA = MD.

a)  Chứng minh: AB = CD

b)  Chứng minh: BD // AC

c)  Tính số đo góc ABD

Bài 14: Cho tam giác ABC, AB = AC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:

a)  BE = CD

b)  ∆BMD = ∆CNE

c)  AM là tia phân giác của góc BAC

Bài 15: Cho   ABC cân tại A. Gọi M là trung điểm của cạnh BC.

a) Chứng minh :   ABM =   ACM

b) Từ M vẽ MH  AB và MK  AC. Chứng minh BH = CK

c) Từ B vẽ BP  AC, BP cắt MH tại I. Chứng minh   IBM cân.

Bài 16: Cho   ABC vuông tại A. Từ một điểm K bất kỳ thuộc cạnh BC vẽ KH   AC. Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng minh : 

a) AB // HK b) AKI cân c) d) AIC =  AKC

Bài 17: Cho   ABC cân tại A ( Â < 90o ), vẽ BD  AC và CE  AB. Gọi H là giao điểm của BD  và CE.

a) Chứng minh:  ABD =  ACE b) Chứng minh   AED cân

c) Chứng minh AH là đường trung trực của ED

d)Trên tia đối của tia DB lấy điểm K sao cho DK = DB. Chứng minh   

Bài 18: Cho   ABC cân tại A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Vẽ DH và EK cùng vuông góc với đường thẳng BC. Chứng minh: 

a) HB = CK b) c)HK // DE        d) AHE =  AKD

Bài 19: Cho  ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh:

a)  ADE cân b) ABD =   ACE

Bài 20: Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. Gọi M là giao điểm của BE và CD.

Chứng minh:

a)   BE = CD. b)   BMD =  CME

c) AM là tia phân giác của góc BAC.

Bài 21:  Cho tam giác ABC (AB < AC) có AM là phân giác của góc A (M thuộc BC).Trên AC lấy D sao cho AD = AB.

a) Chứng minh: BM = MD  

b) Gọi K là giao điểm của AB và DM . Chứng minh: DAK = BAC 

c) Chứng minh: AKC cân  

d) So sánh: BM và CM.   

 

 

4
18 tháng 3 2020

đăng gì mà nhiều thế bạn ơi

14 tháng 4 2020

ko làm mà đòi ăn chỉ có ăn đầu bòi ăn cuk