Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Theo định lí Pitago:
Ta có: AB2 + AC2 = BC2
42 + AC2 = 52
16 + AC2 = 25
AC2 = 25 - 16
AC2 = 9
AC2 = 33
=> AC = 3 (cm)
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)
\(\frac{\Rightarrow1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)
Thay vào M ta có
\(\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)
P/s : hỏi từng câu thôi
Bài 5:
a) Xét \(\Delta\)ABM và \(\Delta\)ACM
có: AB = AC ( vì tam giác ABC cân tại A)
\(\widehat{B}=\widehat{C}\) ( vì tam giác ABC cân tại A)
MB = MC ( vì M là trung điểm của BC)
Suy ra \(\Delta\)ABM = \(\Delta\)ACM (c.g.c) (1)
b) Từ (1) => \(\widehat{A_1}=\widehat{A_2}\) (hai góc tương ứng)
Xét \(\Delta\)AEM và \(\Delta\)AFM vuông tại A, tại F
có: AM là cạnh chung
\(\widehat{A_1}=\widehat{A_2}\) (cmt)
Suy ra \(\Delta\)AEM = \(\Delta\)AFM (cạnh huyền-góc nhọn) (*)
c) Từ (*) => AE = AF (hai cạnh tương ứng)
=> \(\Delta\)AEF cân tại A
Lại có \(\widehat{A_1}=\widehat{A_2}\) (cm câu b)
=> AM là tia phân giác
\(\Delta\) AEF có AM là tia phân giác
=> AM cũng là đường cao
AM \(\perp\) EF