Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(4/ 3* 9/ 8* 16/ 15* 25/ 24......9801/ 9800)
=(2* 2* 3* 3* 4* 4* 5* 5......*99* 99)/ (1* 3* 2* 4* 3* 5* 4* 6......98* 100)
=((2* 3* 4* 5*......*99)/ (1* 2* 3* 4*....* 98))/ ((2* 3* 4*...99)/ (3* 4* 5*.....*100))
=99* (1/ 50)
=99/ 50
đúng thì k cho mình bn nha (^.^)
Ta thấy khoảng cách của các số lần lượt là :
8 ; 16 ; 24 và chúng đều chia hết cho 8
Còn lại tự làm nhé
:))
Ta có 1+9+25+49+...+9801
=12+32+52+72+...+992
Ta có công thức tổng quát
12+32+52+...+(2n-1)2=\(\frac{n\left(4n^2-1\right)}{3}\)
Ta có 99=2x50-1
=>12+32+52+...+992=\(\frac{50.\left(4.50^2-1\right)}{3}=166650\)
\(A=\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\cdot...\cdot\left(1-\dfrac{1}{9801}\right)\)
\(=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)\cdot...\left(1-\dfrac{1}{99}\right)\left(1+\dfrac{1}{99}\right)\)
\(=\left(\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{98}{99}\right)\cdot\left(\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{100}{99}\right)\)
\(=\dfrac{1}{99}\cdot\dfrac{100}{2}=\dfrac{50}{99}\)
4-\(\frac{4}{9}\)- [\(2\frac{1}{4}\)+1\(\frac{4}{9}\)]
=\(4-\frac{4}{9}-2\frac{1}{4}-1\frac{4}{9}\)
=\(\left(4-2\frac{1}{4}\right)-\left(\frac{4}{9}-1\frac{4}{9}\right)\)
=\(1\frac{3}{4}-\left(-1\right)\)
=\(2\frac{3}{4}\)
a)\(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{23.27}=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}=\frac{1}{3}-\frac{1}{27}=\frac{8}{27}\)
b)\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{6.7}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{6}-\frac{1}{7}=\frac{1}{2}-\frac{1}{7}=\frac{5}{14}\)
c)\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{11.13}+\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{9.10}=\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)+2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{1}{3}-\frac{1}{13}+2\left(1-\frac{1}{10}\right)=\frac{10}{39}+\frac{9}{5}=\frac{401}{195}\)
\(A=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{9.11}-\frac{1}{11.13}\)
\(\Leftrightarrow A=\frac{1}{1.3}-\frac{1}{11.13}=\frac{1}{3}-\frac{1}{143}=\frac{140}{429}\)
\(A=\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+\frac{4}{7.9.11}+\frac{4}{9.11.13}\)
\(\Rightarrow A=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{9.11}-\frac{1}{11.13}\)
\(\Rightarrow A=\frac{1}{1.3}-\frac{1}{11.13}=\frac{1}{3}-\frac{1}{143}=\frac{140}{429}\)