K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2020

\(C=\sqrt{4-2\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)

\(\Leftrightarrow C=\sqrt{3-2\sqrt{3}+1}-\sqrt{4+4\sqrt{3}+3}\)

\(\Leftrightarrow C=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(\Leftrightarrow C=\left|\sqrt{3}-1\right|-\left|2+\sqrt{3}\right|\)

\(\Leftrightarrow C=\sqrt{3}-1-2-\sqrt{3}\)

\(\Leftrightarrow C=-3\)

21 tháng 11 2015

Hôm nay thứ 7 rồi

Dê !!!? - Khỏi làm ???!

2 tháng 7 2017

B1 a, Có n lẻ nên n = 2k+1(k E N)

Khi đó: n^2 + 7 = (2k+1)^2 +7 

= 4k^2 + 4k + 8

= 4k(k+1) +8 

Ta thấy k và k+1 là 2 số tự nhiên liên tiếp nên có ít nhất 1 số chia hết cho 2

=> k(k+1) chia hết cho 2 <=> 4k(k+1) chia hết cho 8

Mà 8 chia hết cho 8 <=> n^2 + 7 chia hết cho 8

NV
18 tháng 9 2019

\(A=15+12+4\sqrt{45}+12\sqrt{5}=27+24\sqrt{5}\)

\(B=\left(2\sqrt{3}+6\sqrt{3}\right).\frac{\sqrt{3}}{2}-5\sqrt{6}=\frac{8\sqrt{3}.\sqrt{3}}{2}-5\sqrt{6}=12-5\sqrt{6}\)

\(C=4\sqrt{3}+\frac{4}{\sqrt{3}}+10\sqrt{5}-\frac{10}{\sqrt{5}}=\frac{16}{\sqrt{3}}+8\sqrt{5}\)

7 tháng 8 2017

\(\sqrt{x^2+48}=4x-3+\sqrt{x^2+35}\)

\(\Leftrightarrow\sqrt{x^2+48}-7=4x-4+\sqrt{x^2+35}-6\)

\(\Leftrightarrow\frac{x^2+48-49}{\sqrt{x^2+48}+7}=4\left(x-1\right)+\frac{x^2+35-36}{\sqrt{x^2+35}+6}\)

\(\Leftrightarrow\frac{x^2-1}{\sqrt{x^2+48}+7}-4\left(x-1\right)-\frac{x^2-1}{\sqrt{x^2+35}+6}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{x+1}{\sqrt{x^2+48}+7}-4-\frac{x+1}{\sqrt{x^2+35}+6}\right)=0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

25 tháng 8 2017

\(=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right).\frac{x+\sqrt{x}-1}{\sqrt{x}}\)

\(=\left(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\frac{x+\sqrt{x}-1}{\sqrt{x}}\)

\(=\left(\frac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\frac{x+\sqrt{x}-1}{\sqrt{x}}\)

\(=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\frac{x+\sqrt{x}-1}{\sqrt{x}}\)

10 tháng 10 2017

@Akai Haruma giúp mình

AH
Akai Haruma
Giáo viên
4 tháng 7 2019

Lời giải:
d)

\(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\sqrt{5-\sqrt{13+2\sqrt{12}}}}\)

\(=\sqrt{6+2\sqrt{5-\sqrt{(\sqrt{12}+1)^2}}}=\sqrt{6+2\sqrt{5-(\sqrt{12}+1)}}\)

\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}=\sqrt{6+2\sqrt{(\sqrt{3}-1)^2}}\)

\(=\sqrt{6+2(\sqrt{3}-1)}=\sqrt{4+2\sqrt{3}}=\sqrt{(\sqrt{3}+1)^2}\)

\(=\sqrt{3}+1\)

e)

\(\frac{2}{\sqrt{3}-1}-\frac{3-2\sqrt{3}}{2-\sqrt{3}}=\frac{2}{\sqrt{3}-1}+\frac{\sqrt{3}(2-\sqrt{3})}{2-\sqrt{3}}=\frac{2}{\sqrt{3}-1}+\sqrt{3}\)

\(=\frac{2(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}+\sqrt{3}=\frac{2(\sqrt{3}+1)}{3-1}+\sqrt{3}=\sqrt{3}+1+\sqrt{3}=2\sqrt{3}+1\)

4 tháng 7 2019

d)

\(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\\ =\sqrt{6+2\sqrt{5-\sqrt{12+2\cdot\sqrt{12}\cdot1+1}}}\\ =\sqrt{6+2\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}}\\ =\sqrt{6+2\sqrt{5-\sqrt{12}-1}}\\ =\sqrt{6+2\sqrt{4-\sqrt{12}}}\\ =\sqrt{6+2\sqrt{3-2\cdot\sqrt{3}\cdot1+1}}\\ =\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\\ =\sqrt{6+2\left(\sqrt{3}-1\right)}\\ =\sqrt{6-2\sqrt{3}-2}\\ =\sqrt{4-2\sqrt{3}}\\ =\sqrt{3-2\sqrt{3}+1}\\ =\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)

e)

\(\frac{2}{\sqrt{3}-1}-\frac{3-2\sqrt{3}}{2-\sqrt{3}}\\ =\frac{2}{\sqrt{3}-1}+\frac{\sqrt{3}\left(\sqrt{3}-2\right)}{\sqrt{3}-2}\\ =\frac{2}{\sqrt{3}-1}+\sqrt{3}\\ =\frac{2+\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\\ =\frac{5-\sqrt{3}}{\sqrt{3}-1}\\ =\frac{\left(5-\sqrt{3}\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^2-1}\\ -\frac{6\sqrt{3}-8}{2}=3\sqrt{3}-4\)

(bạn nhớ ktr đã nha)