K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2022

thoyy,tui xin chịu ạ

26 tháng 4 2022

=1/4+1/5-1/5+...-1/39+1/40

=1/4+1/19

=.....(tự tính nka)

23 tháng 6 2017

\(A=\dfrac{99}{100}\)

23 tháng 6 2017

\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+..................+\dfrac{1}{99.100}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+..................+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+.......+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+......+\dfrac{1}{100}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.......+\dfrac{1}{99}-\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+.......+\dfrac{1}{100}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.......+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+......+\dfrac{1}{50}\right)\)

\(=\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+.......+\dfrac{1}{100}\)

\(\Leftrightarrow x\left(2x^2+10x-x-5\right)-\left(2x^3+9x^2+x+4.5\right)=3.5\)

\(\Leftrightarrow2x^3+9x^2-5x-2x^3-9x^2-x-4.5=3.5\)

=>-6x=8

hay x=-4/3

3 tháng 2 2017

\(A-1=\frac{1}{1.2}+\frac{1}{2.3}..+\frac{1}{99.100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}\)\(=\frac{99}{100}\)

\(A=1+\frac{99}{100}=\frac{199}{100}\)

3 tháng 2 2017

=1+1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/98-1/99+1/99-1/100
=1+1/2+1/2-1/100

=199/100

27 tháng 12 2017

\(x\left(2x-1\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4,5\right)=3,5\)

\(\Rightarrow\left(2x^2-x\right)\left(x+5\right)-2x^3-9x^2-x-4,5=3,5\)

\(\Rightarrow2x^3+10x^2-x^2-5x-2x^3-9x^2-x-4,5=3,5\)

\(\Rightarrow-5x-4,5=3,5\)

\(\Rightarrow-5x=8\)

\(\Rightarrow x=-\dfrac{8}{5}\)

4 tháng 2 2017

\(1+\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=2-\frac{1}{100}\)

\(=\frac{199}{100}\)

4 tháng 2 2017

Gọi biểu thức là A

A=1+1/2+1/2.3+1/3.4+...+1/98.99+1/99.100

A-1=1/2+1/2.3+1/3.4+...+1/98.99+1/99.100

A-1=1-1/2+1/2-1/3+1/3-1/4+...+/198-1/99+1/99-1/100

A-1=1-1/100

A-1=99/100

A=99/100+1

A=199/100