Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)
\(\Rightarrow\hept{\begin{cases}y+z+1=2x\\x+z+2=2y\\x+y+z=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)
\(A=2016x+y^{2017}+z^{2017}=2016.\frac{1}{2}+\left(\frac{5}{6}\right)^{2017}+\left(-\frac{5}{6}\right)^{2017}=1008\)
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\Leftrightarrow x=y=z\)
M =\(\frac{y^{670.3}}{y^{2012}}=\frac{y^{2010}}{y^{2012}}=\frac{1}{y^2}\)
Đề sai nhé mẫu mũ 2010 => M =1 mới đúng
a) \(\frac{2x}{3}=\frac{3y}{4}\Leftrightarrow8x=9y\Rightarrow x=\frac{9y}{8}\left(1\right)\)
\(\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow15y=16z\Rightarrow z=\frac{15y}{16}\left(2\right)\)
THay (1) và (2) vào biểu thức \(x+y+z=41\);ta được : \(\frac{9y}{8}+y+\frac{15y}{16}=41\)
\(\Rightarrow18y+16y+15y=656\Rightarrow y=\frac{656}{49}\)
Do đó : \(x=\frac{\frac{9.656}{49}}{8}=\frac{738}{49}\)
\(z=\frac{\frac{15.656}{49}}{16}=\frac{615}{49}\)
KL : \(x=\frac{738}{49};y=\frac{656}{49};z=\frac{615}{49}\)
b) Ta có : \(4x=3y\Rightarrow x=\frac{3y}{4}\)(1)
\(5y=6z\Rightarrow z=\frac{5y}{6}\)(2)
Thay (1) và (2) vào biểu thức \(x^2+y^2+z^2=500\);ta được :
\(\left(\frac{3y}{4}\right)^2+y^2+\left(\frac{5y}{6}\right)^2=500\)
\(\Rightarrow\frac{9y^2}{16}+y^2+\frac{25y^2}{36}=500\Rightarrow324y^2+576y^2+400y^2=288000\)
\(\Rightarrow1300y^2=288000\Rightarrow y^2=\frac{2880}{13}\Rightarrow\orbr{\begin{cases}y=\frac{24\sqrt{65}}{13}\\y=-\frac{24\sqrt{65}}{13}\end{cases}}\)
Với \(y=\frac{24\sqrt{65}}{13}\Rightarrow x=\frac{3\cdot\frac{24\sqrt{65}}{13}}{4}=\frac{18\sqrt{65}}{13};z=\frac{5\cdot\frac{24\sqrt{65}}{13}}{6}\)
\(y=-\frac{24\sqrt{65}}{13}\Rightarrow x=-\frac{18\sqrt{65}}{13};z=\frac{5\cdot-\frac{24\sqrt{65}}{13}}{6}\)
m: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}=\dfrac{3x+5y+7z}{3\cdot2+5\cdot\dfrac{5}{2}+7\cdot\dfrac{7}{4}}=\dfrac{123}{\dfrac{123}{4}}=4\)
Do đó: x=8; y=10; z=7
n: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
Bài 20:
a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
=> x = y; y = x
=> x = y = z
mà \(M=\frac{x^{670}.y^{670}.z^{670}}{y^{2012}}\)
\(\Rightarrow M=\frac{y^{670}.y^{670}.y^{670}}{y^{2012}}=\frac{y^{2010}}{y^{2012}}=\frac{1}{y^2}\)
b) a + c = 2b
=> d(a + c) = 2bd
=> ad + cd = 2bd (1)
Có: c(b + d) = 2bd
=> cb + cd = 2bd (2)
(1);(2) => ad + cd = cb + cd
=> ad = cb
=> a/b = c/d
=> đpcm
đợi nghĩ nốt c đã
ừ, thay chỗ M đi, thế x=y=z vào, rõ là giang biết mà ko làm, làm đi chứ, tui đầu óc ngu si làm sai ko à
ta có :
\(\frac{2}{y-2}=\frac{3}{z+2}\Leftrightarrow\frac{2}{y}=\frac{3}{z+5}\Leftrightarrow\frac{4}{y^2}=\frac{9}{\left(z+5\right)^2}\) hay ta có :\(\left(z+5\right)^2=\frac{9}{4}y^2\Rightarrow2y^2-\frac{9}{4}y^2=-25\Leftrightarrow y^2=100\)
TH1.\(y=10\Rightarrow\frac{4}{x+1}=\frac{2}{10-2}=\frac{3}{z+2}\Leftrightarrow\hept{\begin{cases}x=15\\z=10\end{cases}}\)
TH2.\(y=-10\Rightarrow\frac{4}{x+1}=\frac{2}{-10-2}=\frac{3}{z+2}\Leftrightarrow\hept{\begin{cases}x=-25\\z=-20\end{cases}}\)