K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2017

ta có \(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right).......\left(\frac{1}{10}-1\right)\)

\(A=-\left(\frac{1}{2}.\frac{2}{3}.....\frac{9}{10}\right)\)

\(A=-\frac{1}{10}\)

vi\(-\frac{1}{10}>-\frac{1}{9}\)

do đó A>\(\frac{-1}{9}\)

26 tháng 8 2016

A = 1/1×2 + 1/2×3 + 1/3×4 + .. + 1/99×100

A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100

A = 1 - 1/100 < 1

26 tháng 8 2016

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A=1\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(A=1-\frac{1}{100}< 1\)

=>  ĐPCM

24 tháng 2 2019

\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)

\(A=\left(\frac{2}{2}-\frac{1}{2}\right)\left(\frac{3}{3}-\frac{1}{3}\right)...\left(\frac{19}{19}-\frac{1}{19}\right)\left(\frac{20}{20}-\frac{1}{20}\right)\)

\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{18}{19}.\frac{19}{20}\)

\(A=\frac{1.2.3...18.19}{2.3.4...19.20}\)

\(A=\frac{1}{20}\Leftrightarrow A>\frac{1}{21}\)

24 tháng 2 2019

\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{20}\right)\)

\(A=\frac{1}{2}.\frac{2}{3}......\frac{19}{20}=\frac{1}{20}>\frac{1}{21}\)

\(\text{Vậy: A lớn hơn 1/21}\)

12 tháng 4 2016

Ta có: \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)

\(A=\frac{-3}{2^2}.\frac{-8}{3^2}.\frac{-15}{4^2}...\frac{-9900}{100^2}\)

\(A=\frac{\left(-1\right).3}{2^2}.\frac{\left(-2\right).4}{3^2}.\frac{\left(-3\right).5}{4^2}...\frac{\left(-99\right).101}{100^2}\)

\(A=\cdot\frac{\left(-1\right).\left(-2\right).\left(-3\right)...\left(-99\right)}{2.3.4...100}.\frac{3.4.5...101}{2.3.4...100}\)

\(A=\left(-\frac{1}{100}\right).\frac{101}{2}\)

\(A=-\frac{101}{200}\)

6 tháng 1 2017

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)

\(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)

Ta có: \(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)\(< \)\(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\left(1\right)\)

Mà \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=1-\frac{1}{n}< 1\left(2\right)\). Từ (1) và (2) suy ra

\(A< B< 1\Rightarrow A< 1\)

6 tháng 1 2017

> nha bạn

Chúc các bạn học giỏi

Tết vui vẻ nha

13 tháng 7 2018

-A =( 1- 1/2 )(1 -1/3).....(1 -1/10)

    = 1/2 . 2/3 ..... 9/10

    = 1/10

-A = 1/10 nên A = -1/10

Vì 1/10 < 1/9 nên -1/10 > -1/9

Vậy A > -1/9

13 tháng 7 2018

\(A=\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right)...\left(\frac{1}{10}-1\right)=-\frac{1}{2}.-\frac{2}{3}...-\frac{9}{10}\)

\(=\frac{-\left(1.2...9\right)}{2.3...10}=\frac{-1}{10}\)