Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sửa đề tí nhé: \(x=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{197.199}\)
\(x=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{197}-\frac{1}{199}\right)\)
\(x=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{199}\right)\)
\(x=\frac{1}{2}.\frac{196}{597}\)
\(x=\frac{98}{597}\)
\(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right)y=\frac{2}{3}\)
=> \(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)y=\frac{2}{3}\)
=> \(\frac{1}{2}\left(1-\frac{1}{11}\right)y=\frac{2}{3}\)
=> \(\frac{1}{2}.\frac{10}{11}y=\frac{2}{3}\)
=> \(\frac{5}{11}y=\frac{2}{3}\)
=>y = \(\frac{2}{3}:\frac{5}{11}\)
=> y = \(\frac{22}{15}\)
cho mk cái lời giải thích chỗ nhân 1/2 ý mk ko hiểu mong bn thông cảm
(1/3x5+1/5x7+....+1/19x21)*x=9/7
(1/3-1/5+1/5-1/7+...+1/19-1/21)*x=9/7
(1/3-1/21)*x=9/7
2/7*x=9/7
=> x=9/7:2/7
=> x=9/2
Bạn leminhduc sai rùi @@
Ta xét :
B = \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{19.21}\)
2 x B = \(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{19.21}\)
2 x B = \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\)
2 x B = \(\frac{1}{3}-\frac{1}{21}\)=\(\frac{2}{7}\)
B = \(\frac{2}{7}:2\)
B = \(\frac{1}{7}\)
Thay B vào biểu thức ta có :
\(\frac{1}{7}.x=\frac{9}{7}\)
=> x = \(\frac{9}{7}:\frac{1}{7}\)=\(\frac{9}{7}.\frac{7}{1}\)=9
Vậy x = 9
\(2.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right).y=\frac{2}{3}\)
\(2\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right).y=\frac{2}{3}\)
\(2.\left(\frac{1}{1}-\frac{1}{11}\right).y=\frac{2}{3}\)
\(2.\frac{10}{11}.y=\frac{2}{3}\)
\(\frac{20}{11}.y=\frac{2}{3}\)
\(\Rightarrow y=\frac{11}{30}\)
Study well
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\frac{100}{101}\)
\(=\frac{50}{101}\)
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{99\cdot101}\)
\(=2\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{99\cdot101}\right)\)
\(=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{99\cdot101}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{1}-\frac{1}{101}=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)
Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(2A=1-\frac{1}{9.11}=1-\frac{1}{99}=\frac{98}{99}\)
\(A=\frac{98}{99}:2=\frac{49}{99}\)
Ủng hộ mk nha!!!
Giải:
\(\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}\right)y=-\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}=-\dfrac{2}{3y}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\right)=-\dfrac{2}{3y}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{11}\right)=-\dfrac{2}{3y}\)
\(\Leftrightarrow\dfrac{1}{2}.\dfrac{10}{11}=-\dfrac{2}{3y}\)
\(\Leftrightarrow\dfrac{5}{11}=-\dfrac{2}{3y}\)
\(\Leftrightarrow15y=-22\)
\(\Leftrightarrow y=-\dfrac{22}{15}\)
Vậy ...
=(2-1)*(2+1)+(4-1)*(4+1)+ ...+(2n-1)*(2n+1) =(2^2-1)+(4^2-1)+...+(4n^2-1) =(2^2+4^2+...+4n^2)-(1+1+...+1) =4(1^2+2^2+...n^2)-n n(n+1)(2n+1)/6: 1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6n^2=n 1x3+3x5+5x7+7x9+...+17x19 =4(1^2+2^2+...n^2)-n =4*n(n+1)(2n+1)/6-n; n=10,1x3+3x5+5x7+7x9+...+17x19=1530