K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2021

Viết dưới dạng latex để mik dễ hỗ trợ bn nhé

21 tháng 8 2021

\(\sqrt{3x+15}=\sqrt{10} \)

\( \sqrt{4(1-x)^{2}}-6=0\)

30 tháng 7 2019

a) \(x^2+3-\sqrt{2x^2-3x+2}=\frac{3}{2}\left(x+1\right)\)

\(\Leftrightarrow x^2.2+3.2-\sqrt{2x^2-3x+2}.3=\frac{3}{2}\left(x+1\right).2\)

\(\Leftrightarrow2x^2+6-\sqrt{2x^2-3x+2}=3\left(x+1\right)\)

\(\Leftrightarrow2x^2+6-2\sqrt{2x^2-3x+2}=3x+3\)

\(\Leftrightarrow-2\sqrt{2x^2-3x+2}+6=3x^2+3-2x^2\)

\(\Leftrightarrow-2\sqrt{2x^2-3x+2}=3x+3-2x^2-6\)

\(\Leftrightarrow-2\sqrt{2x^2-3x+2}=-2x^3+3x-3\)

\(\Leftrightarrow\left(-2\sqrt{2x^2-3x+2}\right)^2=\left(-2x^2+3x-3\right)^2\)

\(\Leftrightarrow8x^2-12x+8=4x^4-12x^3+21x^2-18x+9\)

\(\Leftrightarrow4x^2-12x^3+12x^2-6x+1=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(2x-1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy: nghiệm phương trình là \(\left\{1;\frac{1}{2}\right\}\)

30 tháng 7 2019

b) \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)

\(\Leftrightarrow\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)

\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)

Xét \(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|\)

\(=\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}-2+3-\sqrt{x-1}\right|=\left|1\right|=1\)

Dấu "=" xảy ra \(\Leftrightarrow\left(\sqrt{x-1}-2\right)\left(3-\sqrt{x-1}\right)\ge0\Leftrightarrow5\le x\le10\)

8 tháng 4 2019

∆'= b'²-ac= m²-1(m²-1)=m²-m²+1=1>0

Vì ∆' >0 nên pt có 2 nghiệm phân biệt:

X1= (-b'+✓∆')/a= -m+1

X2= (-b' - √∆')/a= -m-1

29 tháng 2 2020

a) \(4\left(x+3\right)^2=\left(2x+6\right)^2\)

\(\Leftrightarrow2^2\left(x+3\right)^2=\left(2x+6\right)^2\)

\(\Leftrightarrow\left(2x+6\right)^2=\left(2x+6\right)^2\)

Vậy tập nghiệm của phương trình là \(S=ℝ\)

b) \(\left(3x+4\right)^2=4\left(x+3\right)\)

\(\Leftrightarrow9x^2+24x+16=4x+12\)

\(\Leftrightarrow9x^2+20x+4=0\)

\(\Leftrightarrow\left(9x+2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}9x+2=0\\x+2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{9}\\x=-2\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{2}{9};-2\right\}\)

c) \(\left(6x+3\right)^2=\left(x-4\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}6x+3=x-4\\6x+3=4-x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}5x+7=0\\7x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{7}{5}\\x=\frac{1}{7}\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{7}{5};\frac{1}{7}\right\}\)

d) \(\left(x^2+3x+2\right)\left(x^2+3x+3\right)-2=0\)

Đặt \(t=x^2+3x+2\), ta có :

     \(t\left(t+1\right)-2=0\)

\(\Leftrightarrow t^2+t-2=0\)

\(\Leftrightarrow\left(t+2\right)\left(t-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+2=0\\t-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+3x+4=0\\x^2+3x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{3}{2}\right)^2+\frac{7}{4}=0\left(ktm\right)\\\left(x+\frac{3}{2}\right)^2-1,25=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow x=\pm\sqrt{1,25}-\frac{3}{2}=-\frac{3\pm\sqrt{5}}{2}\)(tm)

Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{3\pm\sqrt{5}}{2}\right\}\)

29 tháng 2 2020

e)Đề bài sai ! Mik sửa :

 \(\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24=0\)

Đặt \(t=x^2-5x\), ta có :

       \(t^2+10t-24=0\)

\(\Leftrightarrow\left(t+12\right)\left(t-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+12=0\\t-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-5x+12=0\\x^2-5x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-\frac{5}{2}\right)^2+\frac{23}{4}=0\left(ktm\right)\\\left(x-\frac{5}{2}\right)^2-\frac{33}{4}=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow x=\pm\frac{\sqrt{33}}{2}+\frac{5}{2}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{\sqrt{33}}{2}+\frac{5}{2};-\frac{\sqrt{33}}{2}+\frac{5}{2}\right\}\)

f) \(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+x+2\right)-12=0\)

Đặt \(t=x^2+x+1\), ta có :

    \(t\left(t+1\right)-12=0\)

\(\Leftrightarrow t^2+t-12=0\)

\(\Leftrightarrow\left(t+4\right)\left(t-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+x+5=0\\x^2+x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{19}{4}=0\left(ktm\right)\\\left(x+\frac{1}{2}\right)^2-\frac{9}{4}=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}-\frac{1}{2}=1\left(tm\right)\\x=-\frac{3}{2}-\frac{1}{2}=-2\left(tm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{1;-2\right\}\)

g) \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)

Đặt \(t=x^2+x\), ta có :

     \(t\left(t-2\right)-24=0\)

\(\Leftrightarrow t^2-2t-24=0\)

\(\Leftrightarrow\left(t+4\right)\left(t-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t-6=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+x+4=0\\x^2+x-6=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\\\left(x+\frac{1}{2}\right)^2-\frac{25}{4}=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}-\frac{1}{2}=2\left(tm\right)\\x=-\frac{5}{2}-\frac{1}{2}=-3\left(tm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{2;-3\right\}\)

h) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)

Đặt \(t=x^2+5x+4\), ta có :

     \(t\left(t+2\right)-24=0\)

\(\Leftrightarrow t^2+2t-24=0\)

\(\Leftrightarrow\left(t+6\right)\left(t-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+6=0\\t-4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+5x+10=0\\x^2+5x=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{5}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\\x\left(x+5\right)=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=-5\left(tm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{0;-5\right\}\)

16 tháng 8 2017

a)\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)

ĐK:tự xác định 

\(pt\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}-2\left(x+1\right)=0\)

\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{2\left(x+3\right)}+\sqrt{x-1}-2\sqrt{x+1}\right)=0\)

Suy ra x=-1 là nghiệm và pt \(\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\)

\(\Leftrightarrow2\left(x+3\right)+x-1+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4\left(x+1\right)\)

\(\Leftrightarrow2\sqrt{2\left(x+3\right)\left(x-1\right)}=x-1\)

\(\Leftrightarrow8\left(x+3\right)\left(x-1\right)-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(8x+24-x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(7x+25\right)=0\Rightarrow x=1\) (thỏa và 7x+25=0 loại do điều kiện....)

b nghiệm xấu quá để mình xem lại :v

\(\Leftrightarrow\sqrt{2x+6}+\sqrt{x-1}=2\sqrt{x+1}\)

\(\Leftrightarrow\sqrt{2x+6}-2\sqrt{2}+\sqrt{x-1}=2\sqrt{x+1}-2\sqrt{2}\)

\(\Leftrightarrow\frac{2\left(x-1\right)}{\sqrt{2x+6}+2\sqrt{2}}+\sqrt{x-1}=\frac{2\sqrt{x-1}}{\sqrt{x+1}+2\sqrt{2}}\)

\(\Leftrightarrow\frac{2\sqrt{x-1}}{\sqrt{2x+6}+2\sqrt{2}}+1=\frac{2\sqrt{x-1}}{\sqrt{x+1}+1\sqrt{2}}\)

đến đây thì chịu 

tìm đc 1 nghiệm là -1;1,nên bình phương lên

14 tháng 8 2020

4x3 - 13x2 + 9x - 18

= 4x3 - 12x2 - x2 + 3x + 6x - 18

= 4x2(x - 3) - x(x - 3) + 6(x - 3)

= (x - 3)(4x2 - x + 6)

x2 + 5x - 6

= x2 + 2x + 3x - 6

= x(x + 2) - 3(x + 2)

= (x + 2)(x - 3)

x3 + 8x2 + 17x + 10

= x3 + x2 + 7x2 + 7x + 10x + 10

= x2(x + 1) + 7x(x + 1) + 10(x + 1)

= (x + 1)(x2 + 7x + 10)

= (x + 1)(x2 + 5x + 2x + 10)

= (x + 1)[ x(x + 5) + 2(x + 5)]

= (x + 1)(x + 5)(x + 2)

x3 + 3x2 + 6x + 4

= x3 + 3x2 + 3x + 1 + 3x + 3

= (x + 1)3 + 3(x + 1)

= (x + 1)[(x + 1)2 + 3]

= (x + 1)(x2 + 2x + 1 + 3)

= (x + 1)(x2 + 2x + 4)

2x3 - 12x2 + 17x - 2

= 2x3 - 8x2 - 4x2 + x + 16x - 2

= (2x3 - 8x2 + x) - (4x2 - 16x + 2)

= x(2x2 - 8x + 1) - 2(2x2 - 8x + 1)

= (2x2 - 8x + 1)(x - 2)

15 tháng 8 2020

Cảm ơn nhiều ạ

20 tháng 7 2017

a, x= -0.99996

b, x= -0.286334219

c, x= -0.885584228