Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( 3x+2). (3x-2)+(x-3)2-10x
=9x2-4+x2-6x+9-10x
=9x2-4+x2-6x+9
=10x-16x+5
(2x+y)2+ (x-2y)2-5. (x+y).(x-y)
=4x2+4xy+y2+x2-4xy+4y2-5.(x2-y2)
=4x2+4xy+y2+x2-4xy+4y2-5x2+5y2
=10y2
(3x-5)2- x.(3x-5)
=9x2-30x+25-3x2+15
=6x2-30x+40
=a, (x-3)(x+3)-(x-7)(x+7)= x2 - 9 - x2 + 7
= -2
b, (4x-5)2+(3x-2)2-2(4x+5)(3x-2)= (4x-5)2 - 2(4x+5)(3x-2) + (3x-2)2
= ( 4x - 5 - 3x + 2 )2
= ( x - 3 )2
c, 2(3x-y)(3x+y)+(3x-y)2+(3x+y)2= 2(3x-y)(3x+y)+(3x-y)2+(3x+y)2
= (3x-y)2+ 2(3x-y)(3x+y)+ (3x+y)2
= ( 3x - y + 3x + y )2
= ( 6x )2
= 36x2
d, (x-y+z)2+(z-y)2+2(x-y+z+2(x-y+z)(y-z-y+z)(y-z)
1, rút gọn
a, (x-3)(x+3)-(x-7)(x+7)
= x^2 - 9 - (x^2 - 49)
= x^2 - 9 - x^2 + 49
= 40
b, (4x-5)2+(3x-2)2-2(4x+5)(3x-2)
= 16x^2 - 40x + 25 + 9x^2 - 12x + 4 - 2(12x^2 - 8x + 15x - 10)
= 25x^2 - 52x + 29 - 24x^2 + 16x - 30x + 20
= x^2 - 66x + 49
c, 2(3x-y)(3x+y)+(3x-y)2+(3x+y)2
= 2(9x^2 - y^2) + 9x^2 - 6xy + y^2 + 9x^2 + 6xy + y^2
= 18x^2 - 2y^2 + 18x^2 + 2y^2
= 36x^2
d, (x-y+z)2+(z-y)2+2(x-y+z+2(x-y+z)(y-z-y+z)(y-z)
= dài vl
a) Ta có: \(A=1999.2001=\left(2000-1\right)\left(2000+1\right)=2000^2-1< 2000^2\)
Vậy A < 20002
c) \(E=26^2-24^2=\left(26-24\right)\left(26+24\right)=2.50\)
\(F=27^2-25^2=\left(27-25\right)\left(27+25\right)=2.52\)
Vì 50 < 52 => 2.50 < 2.52
=> E < F
a) \(A=1999\cdot2001=\left(2000-1\right)\left(2000+1\right)=2000^2-1\)
=> \(A< B\)
b) \(A=12^6\)
\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1\)
=> \(A>B\)
c) \(A=2011\cdot2013=\left(2012-1\right)\left(2012+1\right)=2012^2-1\)
\(B=2012^2\)
=> \(A< B\)
d) \(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\frac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)}{2}\)
\(=\frac{\left(3^4-1\right)\left(3^4+1\right)..\left(3^{64}+1\right)}{2}\)
\(=\frac{\left(3^8-1\right).....\left(3^{64}+1\right)}{2}\)
\(=\frac{3^{128}-1}{2}\)
\(B=3^{128}-1\)
=> \(A< B\)
x-4 x^4-3x^2+2x-5 x^3+4x^2+13x x^4-4x^3 4x^3-3x^2+2x-5 4x^3-16x^2 13x^2+2x-5 13x^2-52x 54x-5
Vậy x4 - 3x2 + 2x - 5 cho x - 4 bằng \(x^3+4x^2+13x\)dư 54x - 5
x+2 x^4+3x^3-2x^2-5x+6 x^3+x^2-4x+3 x^4+2x^3 x^3-2x^2-5x+6 x^3+2x^2 -4x^2-5x+6 -4x^3-8x 3x+6 3x+6 0
Vậy x4+3x3-2x2-5x+6 cho x+2 bằng \(x^3+x^2-4x+3\)dư 0
a)
\(x^2+x+\frac{1}{4}=4x^2\)
\(x^2+2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2=\left(2x\right)^2\)
\(\left(x+\frac{1}{2}\right)^2=\left(2x\right)^2\)
\(\Leftrightarrow x+\frac{1}{2}=2x\)
\(\Leftrightarrow x=\frac{1}{2}\)
2)
\(3x^2+6x+100\)
\(=3\left(x^2+2x+\frac{100}{3}\right)\)
\(=3\left(x^2+2\cdot x\cdot1+1^2+\frac{100}{3}\right)\)
\(=3\left[\left(x+1\right)^2+\frac{100}{3}\right]\)
\(=3\left(x+1\right)^2+100\ge100\forall x\left(đpcm\right)\)
a) \(9x^2-12x+4=0\)
\(\Leftrightarrow\left(3x\right)^2-3x.2.2+2^2=0\)
\(\Leftrightarrow\left(3x-2\right)^2=0\)
\(\Leftrightarrow3x-2=0\)
\(\Leftrightarrow3x=2\)
\(\Leftrightarrow x=\frac{2}{3}\)
Vậy ...
b) \(\left(x-2\right)^2-25=0\)
\(\Leftrightarrow\left(x-2\right)^2=25\)
\(\Leftrightarrow\left(x-2\right)^2=5^2=\left(-5\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=5\\x-2=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-3\end{cases}}}\)
Vậy ...
c) \(x^3+3x^2+3x+1=0\)
\(\Leftrightarrow\left(x+1\right)^3=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy ...
1/
a. \(3x\left(5x^2-2x-1\right)\)
\(=15x^3-6x^2-3x\)
b. \(\left(x^2-2xy+3\right)\left(-xy\right)\)
\(=-x^3y+2x^2y^2-3xy\)
c. \(\left(2x^2-3xy+y^2\right)\left(x+y\right)\)
\(=2x^3-3x^2y+xy^2+2x^2y-3xy^2+y^3\)
\(=2x^3-x^2y-2xy^2\)
a) thiếu đề
b) \(\left(3x-3\right)\left(5-21x\right)+\left(7x+4\right)\left(9x-5\right)=44\)
\(15x-63x^2-15+63x+63x^2-35x+36x-20=44\)
\(79x-35=40\)
\(79x=75\)
\(x=\frac{75}{79}\)
Bài 1: Bạn thiếu yêu cầu đề bài.
Bài 2:
Áp dụng công thức HĐT đáng nhớ ta có:
\(1999.2001=(2000-1)(2000+1)=2000^2-1^2< 2000^2\)
\(\Leftrightarrow A< B\)
Bài 3:
\(a^2+b^2=a^2+2ab+b^2-2ab=(a+b)^2-2ab\)
\(=7^2-2.5=39\)
bài 1 là tìm x ạ !
(3x-1)2-9x(x2+5)=8