Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mik làm được 1 bài thôi . Tiếc quá mình sắp phải đi học rồi.
BÀi 12:
S=1 + 2 + 22 + `23 +..........+ 22017
2S=2 + 22 + `23 + 24 +..........+22017 + 22018
Trừ đi hai vế ta được:
S=1 + 22018
A = 22007 - 2
B = 3101 - 3
C = 4N - 42
D = 52000 - 1
chắc là z ~~~~~~~~
a) ta có : \(A=1+2+2^2+2^3+...+2^{2017}\)
\(\Rightarrow2A=2\left(1+2+2^2+2^3+...+2^{2017}\right)\)
\(\Leftrightarrow2A=2+2^2+2^3+2^4...+2^{2018}\) \(\Rightarrow2A-A=A=\left(2+2^2+2^3+2^4+...+2^{2018}\right)-\left(1+2+2^2+2^3+...+2^{2017}\right)\)\(\Leftrightarrow\) \(A=2^{2018}-1\)
\(\Rightarrow2\left(A+1\right)=2\left(2^{2018}-1+1\right)=2\left(2^{2018}\right)=2^{2019}=2^{n+1}\)
\(\Rightarrow2019=n+1\Leftrightarrow n=2019-1=2018\) vậy \(n=2018\)
b) ta có : \(A=2+2^2+2^3+...+2^{2017}\)
\(\Rightarrow2A=2\left(2+2^2+2^3+...+2^{2017}\right)\)
\(\Leftrightarrow2A=2^2+2^3+2^4...+2^{2018}\) \(\Rightarrow2A-A=A=\left(2^2+2^3+2^4+...+2^{2018}\right)-\left(2+2^2+2^3+...+2^{2017}\right)\)\(\Leftrightarrow\) \(A=2^{2018}-2\)
\(\Rightarrow2A+4=2\left(2^{2018}-2\right)+4=2^{2019}-4+4=2^{2019}=2^{n+1}\)
\(\Rightarrow2019=n+1\Leftrightarrow n=2019-1=2018\) vậy \(n=2018\)
a)
A = 2 + 22 + 23 + 24 + .... +299 + 2100
2A = 22 + 23 + 24 + 25 + ... + 2100 + 2101
2A - A = A = 2101 - 2
vậy A = 2101 - 2
b)
B = 1 + 2 + 22 + 23 + ... + 22017
2B = 2 + 22 + 23 + 24 + ... + 22018
2B - B = B = 22018 - 1
Vậy B = 22018 - 1
c)
C = 2 + 23 + 25 + ... + 22017
4C = 23 + 25 + 27 + ... + 22019
4C - C = 3C = 22019 - 2
C = \(\frac{2^{2019}-2}{3}\)
d)
D = 2 + 24 + 27 + ... + 22017
8D = 24 + 27 + 210 + ... + 22020
8D - D = 7D = 22020 - 2
D = \(\frac{2^{2020}-2}{7}\)
+) \(A=3\left(x-4\right)^4-4\ge-4\)
Min A = -4 \(\Leftrightarrow x-4=0\Leftrightarrow x=4\)
+) \(B=5+2\left(x-2019\right)^{2020}\ge5\)
Min B = 5 \(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\)
+) \(C=5+2018\left(2020-x\right)^2\)
Min C = 5 \(\Leftrightarrow2020-x=0\Leftrightarrow x=2020\)
+) \(D=\left(x-1\right)^{2020}+\left(y+x\right)-1\ge-1\)
Min D = -1 \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-x\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-1\end{cases}}}\)
+) \(E=2\left(x-1\right)^2+3\left(2x-y\right)^4-2\ge-2\)
Min E = -2 \(\Leftrightarrow\hept{\begin{cases}x-1=0\\2x-y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\2x=y\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
ta có: \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};\frac{1}{5^2}< \frac{1}{4.5};...;\frac{1}{2017^2}< \frac{1}{2016.2017}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2017^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2016.2017}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2016}-\frac{1}{2017}\)
\(=\frac{1}{2}-\frac{1}{2017}< \frac{1}{2}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2017^2}< \frac{1}{2}\left(đpcm\right)\)