K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2018

a, 1 + 3 + 5 + 7 + ............. + n 

=\(\frac{\left(n+1\right)\left(n-1\right)}{2}\)=676

=>\(\left(n+1\right)\left(n-1\right)\)=676*2 =1352

Còn lạ bạn tự suy luận là ra

14 tháng 11 2018

[1+n].n:2=676

[1+n].n=1352=35.37

n=20

[2+n].n:2=992

[2+n].n=1984=42.44

n=44

17 tháng 7 2016

ra 51 ko biết cách làm

12 tháng 8 2015

(1 - 1/4) . (1 - 1/9) ...... (1 - 1/676)

= 3/4 . 8/9 ........ 675/676

\(\frac{1.3.2.4....25.27}{2.2.3.3......26.26}\)

\(\frac{\left(1.2....25\right)\left(3.4....27\right)}{\left(2.3....26\right)\left(2.3....26\right)}\)

\(\frac{27}{26.2}\)

\(\frac{27}{52}\)

3 tháng 8 2015

(6x5-x)^2=676

(30-x)^2=676

(30-x)^2=26^2

30-x=26

x=30-26

x=4

 

a) A=\(\frac{178}{179}+\frac{179}{180}+\frac{183}{181}\)

ta có :

 \(A=\left(1-\frac{1}{179}\right)+\left(1-\frac{1}{180}\right)+\left(1+\frac{2}{181}\right)\)

 \(\Rightarrow A=\left(1+1+1\right)-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)\)

\(\Rightarrow A=3-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)< 3\)

Vậy \(A< 3\)

2 tháng 5 2019

a. Ta có :

\(\frac{178}{179}< 1\left(\frac{1}{179}\right)\)

\(\frac{179}{180}< 1\left(\frac{1}{180}\right)\)

\(\frac{183}{181}>1\left(\frac{3}{181}\right)\left(1\right)\)

Mà \(\frac{3}{181}>\frac{1}{179}+\frac{1}{180}\left(=\frac{359}{32220}< \frac{3}{181}\right)\left(2\right)\)

Từ \(\left(1\right)\&\left(2\right)\Rightarrow\frac{178}{179}+\frac{179}{180}+\frac{183}{181}< 1+1+1\)

Vậy \(A< 3\)

11 tháng 8 2016

a)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{3}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(1+\left(\frac{-1}{2}+\frac{1}{2}\right)+\left(\frac{-1}{3}+\frac{1}{3}\right)+...+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{10}\)

\(1-\frac{1}{10}\)

=\(\frac{9}{10}\)

b)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)

=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)

=\(1-\frac{1}{11}\)

\(\frac{10}{11}\)

c) đặt A=\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}\)

     \(\frac{1}{3}A\)=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)

     \(\frac{2}{3}A\)=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)

      \(\frac{2}{3}A\)=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)

     \(\frac{2}{3}A\)=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)

     \(\frac{2}{3}A\)=\(\frac{10}{11}\)

         A= \(\frac{10}{11}:\frac{2}{3}\)

          A= \(\frac{10}{11}.\frac{3}{2}\)=\(\frac{15}{11}\)

d) giả tương tự câu c kết quả \(\frac{25}{11}\)

11 tháng 8 2016

tổng đặc biệt đó bạn

\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(1-\frac{1}{10}=\frac{9}{10}\)

những câu sau cũng áp dụng như vậy nhé

A=1/2^2+1/3^2+....+1/1009^2

2A=2/2^2+2/3^2+...+2/1009^2

Ta có : (x-1).(x+1)=(x-1).x+x-1=x^2-x+x-1=x^2-1<x^2

2A<2/1.3+2/3.5+2/5.7+...+2/1008.10010

2A<1-1/3+1/3-1/5+...+1/1008-1/1010

2A<1-1/1010

2A<1009/1010<1<3/2

2A<3/2

A<3/4

ĐPCM

Nhớ cho mình nha!

2 tháng 1 2018

\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}=\frac{1+5\left(1 +5+5^2+...+5^8\right)}{1+5+5^2+...+5^8}=5+\frac{1}{1+5+5^2+...+5^8} \)

\(B=\frac{1+3+3^2+....+3^9}{1+3+3^2+....+3^8}=\frac{1+3\left(1+3+3^2+....+3^8\right)}{1+3+3^2+....+3^8}=3+\frac{1}{1+3+3^2+....+3^8}\)

\(=5+\frac{1}{1+3+3^2+....+3^8}-2\)  

Có: \(\frac{1}{1+5+5^2+...+5^8}>0\)              và      \(\frac{1}{1+3+3^2+....+3^8}-2< 0\)

\(\Rightarrow A>B\)

25 tháng 6 2018

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)

        \(=1-\frac{1}{11}=\frac{10}{11}\)

\(\Rightarrow A=\frac{5}{11}\)

25 tháng 6 2018

\(2B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2017.2019}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)

        \(=1-\frac{1}{2019}=\frac{2018}{2019}\Rightarrow B=\frac{1009}{2019}\)

\(\frac{2}{7}C=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2017.2019}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)

           \(=1-\frac{1}{2019}=\frac{2018}{2019}\Rightarrow C=\frac{2018}{2019}:\frac{2}{7}=\frac{7063}{2019}\)