Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S-1=2/1.3+2/3.5+...+2/99.100
=1-1/3+1/3-1/5+...+1/99-1/100
=1-1/100
=99/100
S=99/100+1
=199/100
K bít có đúng k nữa
a)Đặt \(A=\dfrac{6}{1.4}+\dfrac{6}{4.7}+\dfrac{6}{7.10}+...+\dfrac{6}{97.100}\)
\(3a=3-\dfrac{3}{4}+\dfrac{3}{4}-\dfrac{3}{7}+\dfrac{3}{7}-\dfrac{3}{10}+...+\dfrac{3}{97}-\dfrac{3}{100}\)
\(=3-\dfrac{3}{100}\)
\(=\dfrac{297}{100}\)
b)Đặt \(B=\dfrac{4}{1.3}+\dfrac{16}{3.5}+\dfrac{36}{5.7}+...+\dfrac{9604}{97.99}\)
\(=2b=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{97.99}\)
\(2b=2-\dfrac{2}{3}+\dfrac{2}{3}-\dfrac{2}{5}+\dfrac{2}{5}-\dfrac{2}{7}+...+\dfrac{2}{97}-\dfrac{2}{99}\)
\(2b=2-\dfrac{2}{99}=\dfrac{198}{99}-\dfrac{2}{99}=\dfrac{196}{99}\)
c) Tương tự! Bạn tự làm nhé!
câu a phải là như z ms làm được bn ơi
A = 31.3+33.5+...+319.2031.3+13.5+...+319.20
\(\left(\frac{2}{11.13}+\frac{2}{13.15}+...+\frac{2}{19.20}\right)-x+\frac{221}{231}=\frac{4}{3}\)
\(=\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{19}-\frac{1}{20}\right)-x=\frac{4}{3}-\frac{221}{231}\)
\(=\left(\frac{1}{11}-\frac{1}{20}\right)-x=\frac{29}{77}\)
\(=\frac{9}{220}-x=\frac{29}{77}\)
\(x=\frac{9}{220}-\frac{29}{77}\)
bạn ơi chỗ \(\frac{2}{19.20}\) có phải là \(\frac{2}{19.21}\) không
a: \(=\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{18\cdot19}-\dfrac{1}{19\cdot20}\)
=1/2-1/380
=179/380
b: \(=\dfrac{1}{1\cdot3}-\dfrac{1}{3\cdot5}+\dfrac{1}{3\cdot5}-\dfrac{1}{5\cdot7}+...+\dfrac{1}{21\cdot23}-\dfrac{1}{23\cdot25}\)
\(=\dfrac{1}{3}-\dfrac{1}{575}=\dfrac{572}{1725}\)
c: \(=1+\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}-\dfrac{1}{20}-\dfrac{1}{21}\)
=1-1/21
=20/21
d: \(=\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{16}\right)\cdot...\cdot\left(1-\dfrac{1}{121}\right)\)
\(=\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{10}{11}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{12}{11}\)
\(=\dfrac{2}{11}\cdot\dfrac{12}{2}=\dfrac{12}{11}\)
a, A = \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{90}\)
A = \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)
A = 1 . (\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}\))
A = 1 . (\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\))
A = 1 . (\(1-\dfrac{1}{10}\))
A = 1 . \(\dfrac{9}{10}\)
A = \(\dfrac{9}{10}\)